Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Utility of patient-derived lymphoblastoid cell lines as an ex vivo capecitabine sensitivity prediction model for breast cancer patients

Abstract

Capecitabine is commonly used in treating breast cancer; however, therapeutic response varies among patients and there is no clinically validated model to predict individual outcomes. Here, we investigated whether drug sensitivity quantified in ex vivo patients' blood-derived cell lines can predict response to capecitabine in vivo. Lymphoblastoid cell lines (LCLs) were established from a cohort of metastatic breast cancer patients (n = 53) who were prospectively monitored during treatment with single agent capecitabine at 2000 mg/m2/day. LCLs were treated with increasing concentrations of 5'-DFUR, a major capecitabine metabolite, to assess patients' ex vivo sensitivity to this drug. Subsequently, ex vivo phenotype was compared to observed patient disease response and drug induced-toxicities. We acquired an independent cohort of breast cancer cell lines and LCLs derived from the same donors from ATCC, compared their sensitivity to 5'-DFUR. As seen in the patient population, we observed large inter-individual variability in response to 5'-DFUR treatment in patient-derived LCLs. Patients whose LCLs were more sensitive to 5'-DFUR had a significantly longer median progression free survival (9-month vs 6-month, log rank p-value = 0.017). In addition, this significant positive correlation for 5'-DFUR sensitivity was replicated in an independent cohort of 8 breast cancer cell lines and LCLs derived from the same donor. Our data suggests that at least a portion of the individual sensitivity to capecitabine is shared between germline tissue and tumor tissue. It also supports the utility of patient-derived LCLs as a predictive model for capecitabine treatment efficacy in breast cancer patients.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View