## Constant Curvature Algebras and Higher Spin Action Generating Functions

## Published Web Location

https://arxiv.org/pdf/hep-th/0505255.pdf## Abstract

The algebra of differential geometry operations on symmetric tensors over constant curvature manifolds forms a novel deformation of the sl(2,R) [semidirect product] R^2 Lie algebra. We present a simple calculus for calculations in its universal enveloping algebra. As an application, we derive generating functions for the actions and gauge invariances of massive, partially massless and massless (for both bose and fermi statistics) higher spins on constant curvature backgrounds. These are formulated in terms of a minimal set of covariant, unconstrained, fields rather than towers of auxiliary fields. Partially massless gauge transformations are shown to arise as degeneracies of the flat, massless gauge transformation in one dimension higher. Moreover, our results and calculus offer a considerable simplification over existing techniques for handling higher spins. In particular, we show how theories of arbitrary spin in dimension d can be rewritten in terms of a single scalar field in dimension 2d where the d additional dimensions correspond to coordinate differentials. We also develop an analogous framework for spinor-tensor fields in terms of the corresponding superalgebra.