A priori estimates for the free-boundary 3-D compressible Euler equations in physical vacuum
Skip to main content
eScholarship
Open Access Publications from the University of California

A priori estimates for the free-boundary 3-D compressible Euler equations in physical vacuum

  • Author(s): Coutand, Daniel
  • Lindblad, Hans
  • Shkoller, Steve
  • et al.

Published Web Location

https://arxiv.org/pdf/0906.0289.pdf
No data is associated with this publication.
Abstract

We prove a priori estimates for the three-dimensional compressible Euler equations with moving {\it physical} vacuum boundary, with an equation of state given by $p(\rho) = C_\gamma \rho^\gamma $ for $\gamma >1$. The vacuum condition necessitates the vanishing of the pressure, and hence density, on the dynamic boundary, which creates a degenerate and characteristic hyperbolic {\it free-boundary} system to which standard methods of symmetrizable hyperbolic equations cannot be applied.

Item not freely available? Link broken?
Report a problem accessing this item