Skip to main content
A pattern avoidance criterion for free inversion arrangements
Published Web Location
https://arxiv.org/pdf/1409.7299.pdfNo data is associated with this publication.
Abstract
We show that the hyperplane arrangement of a coconvex set in a finite root system is free if and only if it is free in corank 4. As a consequence, we show that the inversion arrangement of a Weyl group element w is free if and only if w avoids a finite list of root system patterns. As a key part of the proof, we use a recent theorem of Abe and Yoshinaga to show that if the root system does not contain any factors of type C or F, then Peterson translation of coconvex sets preserves freeness. This also allows us to give a Kostant-Shapiro-Steinberg rule for the coexponents of a free inversion arrangement in any type.