Exact Localization and Superresolution with Noisy Data and Random Illumination
Skip to main content
eScholarship
Open Access Publications from the University of California

Department of Mathematics

Faculty bannerUC Davis

Exact Localization and Superresolution with Noisy Data and Random Illumination

Published Web Location

https://arxiv.org/pdf/1008.3146.pdf
No data is associated with this publication.
Abstract

This paper studies the problem of exact localization of sparse (point or extended) objects with noisy data. The crux of the proposed approach consists of random illumination. Several recovery methods are analyzed: the Lasso, BPDN and the One-Step Thresholding (OST). For independent random probes, it is shown that both recovery methods can localize exactly $s=\cO(m)$, up to a logarithmic factor, objects where $m$ is the number of data. Moreover, when the number of random probes is large the Lasso with random illumination has a performance guarantee for superresolution, beating the Rayleigh resolution limit. Numerical evidence confirms the predictions and indicates that the performance of the Lasso is superior to that of the OST for the proposed set-up with random illumination.

Item not freely available? Link broken?
Report a problem accessing this item