Shock-Wave Cosmology Inside a Black Hole
Skip to main content
Open Access Publications from the University of California

Department of Mathematics

Faculty bannerUC Davis

Shock-Wave Cosmology Inside a Black Hole

  • Author(s): Smoller, Joel;
  • Temple, Blake
  • et al.

Published Web Location
No data is associated with this publication.

We construct a class of global exact solutions of the Einstein equations that extend the Oppeheimer-Snyder (OS) model to the case of non-zero pressure, {\em inside the Black Hole}, by incorporating a shock wave at the leading edge of the expansion of the galaxies, arbitrarily far beyond the Hubble length in the Friedmann-Robertson-Walker (FRW) spacetime. Here the expanding FRW universe emerges behind a subluminous blast wave that explodes outward from the FRW center at the instant of the Big Bang. The total mass behind the shock decreases as the shock wave expands, and the entropy condition implies that the shock wave must weaken to the point where it settles down to an OS interface, (bounding a {\em finite} total mass), that eventually emerges from the White Hole event horizon of an ambient Schwarzschild spacetime. The entropy condition breaks the time symmetry of the Einstein equations, selecting the explosion over the implosion. These shock wave solutions indicate a new cosmological model in which the Big Bang arises from a localized explosion occurring inside the Black Hole of a Schwarzschild spacetime.

Item not freely available? Link broken?
Report a problem accessing this item