Multigrid Methods for Hellan-Herrmann-Johnson Mixed Method of Kirchhoff Plate Bending Problems
Skip to main content
eScholarship
Open Access Publications from the University of California

Multigrid Methods for Hellan-Herrmann-Johnson Mixed Method of Kirchhoff Plate Bending Problems

  • Author(s): Chen, L
  • Hu, J
  • Huang, X
  • et al.
Abstract

A V-cycle multigrid method for the Hellan-Herrmann-Johnson (HHJ) discretization of the Kirchhoff plate bending problems is developed in this paper. It is shown that the contraction number of the V-cycle multigrid HHJ mixed method is bounded away from one uniformly with respect to the mesh size. The uniform convergence is achieved for the V-cycle multigrid method with only one smoothing step and without full elliptic regularity. The key is a stable decomposition of the kernel space which is derived from an exact sequence of the HHJ mixed method, and the strengthened Cauchy Schwarz inequality. Some numerical experiments are provided to confirm the proposed V-cycle multigrid method. The exact sequences of the HHJ mixed method and the corresponding commutative diagram is of some interest independent of the current context.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View