A combinatorial formula for fusion coefficient
Skip to main content
Open Access Publications from the University of California

Department of Mathematics

Faculty bannerUC Davis

A combinatorial formula for fusion coefficient

Published Web Location

No data is associated with this publication.

Using the expansion of the inverse of the Kostka matrix in terms of tabloids as presented by Egecioglu and Remmel, we show that the fusion coefficients can be expressed as an alternating sum over cylindric tableaux. Cylindric tableaux are skew tableaux with a certain cyclic symmetry. When the skew shape of the tableau has a cutting point, meaning that the cylindric skew shape is not connected, or if its weight has at most two parts, we give a positive combinatorial formula for the fusion coefficients. The proof uses a slight modification of a sign-reversing involution introduced by Remmel and Shimozono. We discuss how this approach may work in general.

Item not freely available? Link broken?
Report a problem accessing this item