Skip to main content

## A combinatorial formula for fusion coefficient

## Published Web Location

https://arxiv.org/pdf/1207.0786.pdfNo data is associated with this publication.

## Abstract

Using the expansion of the inverse of the Kostka matrix in terms of tabloids as presented by Egecioglu and Remmel, we show that the fusion coefficients can be expressed as an alternating sum over cylindric tableaux. Cylindric tableaux are skew tableaux with a certain cyclic symmetry. When the skew shape of the tableau has a cutting point, meaning that the cylindric skew shape is not connected, or if its weight has at most two parts, we give a positive combinatorial formula for the fusion coefficients. The proof uses a slight modification of a sign-reversing involution introduced by Remmel and Shimozono. We discuss how this approach may work in general.