Graphs of Transportation Polytopes
Skip to main content
eScholarship
Open Access Publications from the University of California

Graphs of Transportation Polytopes

  • Author(s): De Loera, Jesús A.
  • Kim, Edward D.
  • Onn, Shmuel
  • Santos, Francisco
  • et al.

Published Web Location

https://arxiv.org/pdf/0709.2189.pdf
No data is associated with this publication.
Abstract

This paper discusses properties of the graphs of 2-way and 3-way transportation polytopes, in particular, their possible numbers of vertices and their diameters. Our main results include a quadratic bound on the diameter of axial 3-way transportation polytopes and a catalogue of non-degenerate transportation polytopes of small sizes. The catalogue disproves five conjectures about these polyhedra stated in the monograph by Yemelichev et al. (1984). It also allowed us to discover some new results. For example, we prove that the number of vertices of an $m\times n$ transportation polytope is a multiple of the greatest common divisor of $m$ and $n$.

Item not freely available? Link broken?
Report a problem accessing this item