Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Hierarchical Assembly of Conductive Fibers from Coiled-Coil Peptide Building Blocks

Abstract

Biology provides many sources of inspiration for synthetic and multifunctional nanomaterials. Naturally evolved proteins exhibit specialized, sequence-defined functions and self-assembly behavior. Recapitulating their molecularly defined self-assembly behavior, however, is challenging in de novo proteins. Peptides, on the other hand, represent a more well-defined and rationally designable space with the potential for sequence-programmable, stimuli-responsive design for structure and function, making them ideal building blocks of bioelectronic interfaces. In this work, we design peptides that exhibit stimuli-responsive self-assembly and the capacity to transport electrical current over micrometer-long distances. A lysine-lysine (KK) motif inserted at solvent-exposed positions of a coiled-coil-forming peptide sequence introduces pH-dependent control over a transition from unordered to α-helical peptide structure. The ordered state of the peptide serves as a building block for the assembly of coiled coils and higher-order assemblies. Cryo-EM structures of these structures reveal a hierarchical organization of α-helical peptides in a cross coiled coil (CCC) arrangement. Structural analysis also reveals a β-sheet fiber phase under certain conditions and placements of the KK motif, revealing a complex and sensitive self-assembly pathway. Both solid-state and solution-based electrochemical characterizations show that CCC fibers are electronically conductive. Single-fiber conductive AFM measurement indicates that the solid-state electrical conductivity is comparable with bacterial cytochrome filaments. Solution-deposited fiber films approximately doubled the electroactive surface area of the electrode, confirming their conductivity in aqueous environments. This work establishes a stimuli-responsive peptide sequence element for balancing the order-disorder transitions in peptides to control their self-assembly into highly organized electronically conductive nanofibers.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.