Fat 4-polytopes and fatter 3-spheres
Skip to main content
eScholarship
Open Access Publications from the University of California

Fat 4-polytopes and fatter 3-spheres

  • Author(s): Eppstein, David
  • Kuperberg, Greg
  • Ziegler, Günter M.
  • et al.

Published Web Location

https://arxiv.org/pdf/math/0204007.pdf
No data is associated with this publication.
Abstract

We introduce the fatness parameter of a 4-dimensional polytope P, defined as \phi(P)=(f_1+f_2)/(f_0+f_3). It arises in an important open problem in 4-dimensional combinatorial geometry: Is the fatness of convex 4-polytopes bounded? We describe and analyze a hyperbolic geometry construction that produces 4-polytopes with fatness \phi(P)>5.048, as well as the first infinite family of 2-simple, 2-simplicial 4-polytopes. Moreover, using a construction via finite covering spaces of surfaces, we show that fatness is not bounded for the more general class of strongly regular CW decompositions of the 3-sphere.

Item not freely available? Link broken?
Report a problem accessing this item