Skip to main content
Open Access Publications from the University of California

Big Galois representations and p-adic L-functions


© 2014 Foundation Compositio Mathematica. Let p ≥ 5 be a prime. If an irreducible component of the spectrum of the 'big' ordinary Hecke algebra does not have complex multiplication, under mild assumptions, we prove that the image of its Galois representation contains, up to finite error, a principal congruence subgroup Γ(L) of SL2(Zp[[T]]) for a principal ideal (L) = 0 of Zp[[T]] for the canonical 'weight' variable t=1+T. If L ∞ Λ×, the power series L is proven to be a factor of the Kubota-Leopoldt p-adic L-function or of the square of the anticyclotomic Katz p-adic L-function or a power of (tpm-1). This journal is

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item