Skip to main content
The text for this item is currently unavailable.
Mediatic Graphs
No data is associated with this publication.
Abstract
Any medium can be represented as an isometric subgraph of the hypercube, with each token of the medium represented by a particular equivalence class of arcs of the subgraph. Such a representation, although useful, is not especially revealing of the structure of a particular medium. We propose an axiomatic definition of the concept of a ‘mediatic graph’. We prove that the graph of any medium is a mediatic graph. We also show that, for any non-necessarily finite set S, there exists a bijection from the collection M of all the media on a given set S (of states) onto the collection G of all the mediatic graphs on S.
The text for this item is currently unavailable.