Skip to main content
eScholarship
Open Access Publications from the University of California

Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach

  • Author(s): Guo, Z
  • Li, B
  • Cheng, LT
  • Zhou, S
  • McCammon, JA
  • Che, J
  • et al.

Published Web Location

http://dx.doi.org/10.1021/ct500867u
No data is associated with this publication.
Abstract

© 2015 American Chemical Society. Protein-ligand binding is a key biological process at the molecular level. The identification and characterization of small-molecule binding sites on therapeutically relevant proteins have tremendous implications for target evaluation and rational drug design. In this work, we used the recently developed level-set variational implicit-solvent model (VISM) with the Coulomb field approximation (CFA) to locate and characterize potential protein-small-molecule binding sites. We applied our method to a data set of 515 protein-ligand complexes and found that 96.9% of the cocrystallized ligands bind to the VISM-CFA-identified pockets and that 71.8% of the identified pockets are occupied by cocrystallized ligands. For 228 tight-binding protein-ligand complexes (i.e, complexes with experimental pKdvalues larger than 6), 99.1% of the cocrystallized ligands are in the VISM-CFA-identified pockets. In addition, it was found that the ligand binding orientations are consistent with the hydrophilic and hydrophobic descriptions provided by VISM. Quantitative characterization of binding pockets with topological and physicochemical parameters was used to assess the "ligandability" of the pockets. The results illustrate the key interactions between ligands and receptors and can be very informative for rational drug design.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item