Skip to main content
The structure of the solutions to semilinear equations at a critical exponent
Published Web Location
https://arxiv.org/pdf/math/9901089.pdfNo data is associated with this publication.
Abstract
This paper is concerned with the structure of the solutions to subcritical elliptic equations related to the Matukuma equation. In certain cases the complete structure of the solution set is known, and is comparable to that of the original Matukuma equation. Here we derive sufficient conditions for a more complicated solution set consisting of; (i) crossing solutions for small initial conditions and large initial conditions; (ii) at least one open interval of slowly decaying solutions; and (iii) at least two rapidly decaying solutions. As a consequence we obtain multiplicity results for rapidly decaying, or minimal solutions.