Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Non-local crime density estimation incorporating housing information.

  • Author(s): Woodworth, JT
  • Mohler, GO
  • Bertozzi, AL
  • Brantingham, PJ
  • et al.

Published Web Location

http://rsta.royalsocietypublishing.org/content/roypta/372/2028/20130403.full.pdf
No data is associated with this publication.
Abstract

Given a discrete sample of event locations, we wish to produce a probability density that models the relative probability of events occurring in a spatial domain. Standard density estimation techniques do not incorporate priors informed by spatial data. Such methods can result in assigning significant positive probability to locations where events cannot realistically occur. In particular, when modelling residential burglaries, standard density estimation can predict residential burglaries occurring where there are no residences. Incorporating the spatial data can inform the valid region for the density. When modelling very few events, additional priors can help to correctly fill in the gaps. Learning and enforcing correlation between spatial data and event data can yield better estimates from fewer events. We propose a non-local version of maximum penalized likelihood estimation based on the H(1) Sobolev seminorm regularizer that computes non-local weights from spatial data to obtain more spatially accurate density estimates. We evaluate this method in application to a residential burglary dataset from San Fernando Valley with the non-local weights informed by housing data or a satellite image.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item