Quantum spin systems on infinite lattices
Skip to main content
eScholarship
Open Access Publications from the University of California

Department of Mathematics

Other bannerUC Davis

Quantum spin systems on infinite lattices

Published Web Location

https://arxiv.org/pdf/1311.2717.pdf
No data is associated with this publication.
Abstract

This is an extended and corrected version of lecture notes originally written for a one semester course at Leibniz University Hannover. The main aim of the notes is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites. Such systems can be used, for example, to model the materials in condensed matter physics. The notes provide the necessary background material to access recent literature in the field. Some of these recent results are also discussed. The contents are roughly as follows: (1) quick recap of essentials from functional analysis, (2) introduction to operator algebra, (3) algebraic quantum mechanics, (4) infinite systems (quasilocal algebra), (5) KMS and ground states, (6) Lieb-Robinson bounds, (7) algebraic quantum field theory, (8) superselection sectors of the toric code, (9) Haag-Ruelle scattering theory in spin systems, (10) applications to gapped phases. The level is aimed at students who have at least had some exposure to (functional) analysis and have a certain mathematical "maturity".

Item not freely available? Link broken?
Report a problem accessing this item