- Main
Planck 2018 results
- Aghanim, N;
- Akrami, Y;
- Ashdown, M;
- Aumont, J;
- Baccigalupi, C;
- Ballardini, M;
- Banday, AJ;
- Barreiro, RB;
- Bartolo, N;
- Basak, S;
- Battye, R;
- Benabed, K;
- Bernard, J-P;
- Bersanelli, M;
- Bielewicz, P;
- Bock, JJ;
- Bond, JR;
- Borrill, J;
- Bouchet, FR;
- Boulanger, F;
- Bucher, M;
- Burigana, C;
- Butler, RC;
- Calabrese, E;
- Cardoso, J-F;
- Carron, J;
- Challinor, A;
- Chiang, HC;
- Chluba, J;
- Colombo, LPL;
- Combet, C;
- Contreras, D;
- Crill, BP;
- Cuttaia, F;
- de Bernardis, P;
- de Zotti, G;
- Delabrouille, J;
- Delouis, J-M;
- Di Valentino, E;
- Diego, JM;
- Doré, O;
- Douspis, M;
- Ducout, A;
- Dupac, X;
- Dusini, S;
- Efstathiou, G;
- Elsner, F;
- Enßlin, TA;
- Eriksen, HK;
- Fantaye, Y;
- Farhang, M;
- Fergusson, J;
- Fernandez-Cobos, R;
- Finelli, F;
- Forastieri, F;
- Frailis, M;
- Fraisse, AA;
- Franceschi, E;
- Frolov, A;
- Galeotta, S;
- Galli, S;
- Ganga, K;
- Génova-Santos, RT;
- Gerbino, M;
- Ghosh, T;
- González-Nuevo, J;
- Górski, KM;
- Gratton, S;
- Gruppuso, A;
- Gudmundsson, JE;
- Hamann, J;
- Handley, W;
- Hansen, FK;
- Herranz, D;
- Hildebrandt, SR;
- Hivon, E;
- Huang, Z;
- Jaffe, AH;
- Jones, WC;
- Karakci, A;
- Keihänen, E;
- Keskitalo, R;
- Kiiveri, K;
- Kim, J;
- Kisner, TS;
- Knox, L;
- Krachmalnicoff, N;
- Kunz, M;
- Kurki-Suonio, H;
- Lagache, G;
- Lamarre, J-M;
- Lasenby, A;
- Lattanzi, M;
- Lawrence, CR;
- Le Jeune, M;
- Lemos, P;
- Lesgourgues, J;
- Levrier, F;
- Lewis, A;
- Liguori, M;
- Lilje, PB;
- Lilley, M;
- Lindholm, V;
- López-Caniego, M;
- Lubin, PM;
- Ma, Y-Z;
- Macías-Pérez, JF;
- Maggio, G;
- Maino, D;
- Mandolesi, N;
- Mangilli, A;
- Marcos-Caballero, A;
- Maris, M;
- Martin, PG;
- Martinelli, M;
- Martínez-González, E;
- Matarrese, S;
- Mauri, N;
- McEwen, JD;
- Meinhold, PR;
- Melchiorri, A;
- Mennella, A;
- Migliaccio, M;
- Millea, M;
- Mitra, S;
- Miville-Deschênes, M-A;
- Molinari, D;
- Montier, L;
- Morgante, G;
- Moss, A;
- Natoli, P;
- Nørgaard-Nielsen, HU;
- Pagano, L;
- Paoletti, D;
- Partridge, B;
- Patanchon, G;
- Peiris, HV;
- Perrotta, F;
- Pettorino, V;
- Piacentini, F;
- Polastri, L;
- Polenta, G;
- Puget, J-L;
- Rachen, JP;
- Reinecke, M;
- Remazeilles, M;
- Renzi, A;
- Rocha, G;
- Rosset, C;
- Roudier, G;
- Rubiño-Martín, JA;
- Ruiz-Granados, B;
- Salvati, L;
- Sandri, M;
- Savelainen, M;
- Scott, D;
- Shellard, EPS;
- Sirignano, C;
- Sirri, G;
- Spencer, LD;
- Sunyaev, R;
- Suur-Uski, A-S;
- Tauber, JA;
- Tavagnacco, D;
- Tenti, M;
- Toffolatti, L;
- Tomasi, M;
- Trombetti, T;
- Valenziano, L;
- Valiviita, J;
- Van Tent, B;
- Vibert, L;
- Vielva, P;
- Villa, F;
- Vittorio, N;
- Wandelt, BD;
- Wehus, IK;
- White, M;
- White, SDM;
- Zacchei, A;
- Zonca, A
- et al.
Published Web Location
https://doi.org/10.1051/0004-6361/201833910eAbstract
In the original version, the bounds given in Eqs. (87a) and (87b) on the contribution to the early-time optical depth, (15,30), contained a numerical error in deriving the 95th percentile from the Monte Carlo samples. The corrected 95% upper bounds are: τ(15,30) < 0:018 (lowE, flat τ(15, 30), FlexKnot), (1) τ(15, 30) < 0:023 (lowE, flat knot, FlexKnot): (2) These bounds are a factor of 3 larger than the originally reported results. Consequently, the new bounds do not significantly improve upon previous results from Planck data presented in Millea & Bouchet (2018) as was stated, but are instead comparable. Equations (1) and (2) give results that are now similar to those of Heinrich & Hu (2021), who used the same Planck 2018 data to derive a 95% upper bound of 0.020 using the principal component analysis (PCA) model and uniform priors on the PCA mode amplitudes.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-