## Geometric approach to error correcting codes and reconstruction of signals

## Published Web Location

https://arxiv.org/pdf/math/0502299.pdf## Abstract

We develop an approach through geometric functional analysis to error correcting codes and to reconstruction of signals from few linear measurements. An error correcting code encodes an n-letter word x into an m-letter word y in such a way that x can be decoded correctly when any r letters of y are corrupted. We prove that most linear orthogonal transformations Q from R^n into R^m form efficient and robust robust error correcting codes over reals. The decoder (which corrects the corrupted components of y) is the metric projection onto the range of Q in the L_1 norm. An equivalent problem arises in signal processing: how to reconstruct a signal that belongs to a small class from few linear measurements? We prove that for most sets of Gaussian measurements, all signals of small support can be exactly reconstructed by the L_1 norm minimization. This is a substantial improvement of recent results of Donoho and of Candes and Tao. An equivalent problem in combinatorial geometry is the existence of a polytope with fixed number of facets and maximal number of lower-dimensional facets. We prove that most sections of the cube form such polytopes.