Greedy Signal Recovery Review
Skip to main content
Open Access Publications from the University of California

Department of Mathematics

Faculty bannerUC Davis

Greedy Signal Recovery Review

Published Web Location
No data is associated with this publication.

The two major approaches to sparse recovery are L1-minimization and greedy methods. Recently, Needell and Vershynin developed Regularized Orthogonal Matching Pursuit (ROMP) that has bridged the gap between these two approaches. ROMP is the first stable greedy algorithm providing uniform guarantees. Even more recently, Needell and Tropp developed the stable greedy algorithm Compressive Sampling Matching Pursuit (CoSaMP). CoSaMP provides uniform guarantees and improves upon the stability bounds and RIC requirements of ROMP. CoSaMP offers rigorous bounds on computational cost and storage. In many cases, the running time is just O(NlogN), where N is the ambient dimension of the signal. This review summarizes these major advances.

Item not freely available? Link broken?
Report a problem accessing this item