- Main
Nonlinear Operators and their Propagators
Abstract
Mathematical physicists are familiar with a large set of tools designed for dealing with linear operators, which are so common in both the classical and quantum theories; but many of those tools are useless with nonlinear equations of motion. In this work a general algebra and calculus is developed for working with nonlinear operators: The basic new tool being the ‘‘slash product,’’ defined by A(1+eB) = A+eA/B + O(e^2). For a generic time development equation, the propagator is constructed and then there follows the formal version of time dependent perturbation theory, in remarkable similarity to the linear situation. A nonperturbative approximation scheme capable of producing high accuracy computations, previously developed for linear operators, is shown to be applicable as well in the nonlinear domain. A number of auxiliary mathematical properties and examples are given.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-