Automatic Qubit Characterization and Gate Optimization with QubiC
Skip to main content
Open Access Publications from the University of California

Automatic Qubit Characterization and Gate Optimization with QubiC


As the size and complexity of a quantum computer increases, quantum bit (qubit) characterization and gate optimization become complex and time-consuming tasks. Current calibration techniques require complicated and verbose measurements to tune up qubits and gates, which cannot easily expand to the large-scale quantum systems. We develop a concise and automatic calibration protocol to characterize qubits and optimize gates using QubiC, which is an open source FPGA (field-programmable gate array) based control and measurement system for superconducting quantum information processors. We propose mutli-dimensional loss-based optimization of single-qubit gates and full XY-plane measurement method for the two-qubit CNOT gate calibration. We demonstrate the QubiC automatic calibration protocols are capable of delivering high-fidelity gates on the state-of-the-art transmon-type processor operating at the Advanced Quantum Testbed at Lawrence Berkeley National Laboratory. The single-qubit and two-qubit Clifford gate infidelities measured by randomized benchmarking are of $4.9(1.1) \times 10^{-4}$ and $1.4(3) \times 10^{-2}$, respectively.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View