- Main
Butterfly Factorization Via Randomized Matrix-Vector Multiplications
Published Web Location
https://doi.org/10.1137/20m1315853Abstract
This paper presents an adaptive randomized algorithm for computing the butterfly factorization of an m × n matrix with m ≈ n provided that both the matrix and its transpose can be rapidly applied to arbitrary vectors. The resulting factorization is composed of O(log n) sparse factors, each containing O(n) nonzero entries. The factorization can be attained using O(n3/2 log n) computation and O(n log n) memory resources. The proposed algorithm can be implemented in parallel and can apply to matrices with strong or weak admissibility conditions arising from surface integral equation solvers as well as multi-frontal-based finite-difference, finite-element, or finite-volume solvers. A distributed-memory parallel implementation of the algorithm demonstrates excellent scaling behavior.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-