Skip to main content
eScholarship
Open Access Publications from the University of California

Adaptation in protein fitness landscapes is facilitated by indirect paths.

  • Author(s): Wu, Nicholas C
  • Dai, Lei
  • Olson, C Anders
  • Lloyd-Smith, James O
  • Sun, Ren
  • et al.

Published Web Location

https://elifesciences.org/content/5/e16965
No data is associated with this publication.
Abstract

The structure of fitness landscapes is critical for understanding adaptive protein evolution. Previous empirical studies on fitness landscapes were confined to either the neighborhood around the wild type sequence, involving mostly single and double mutants, or a combinatorially complete subgraph involving only two amino acids at each site. In reality, the dimensionality of protein sequence space is higher (20(L)) and there may be higher-order interactions among more than two sites. Here we experimentally characterized the fitness landscape of four sites in protein GB1, containing 20(4) = 160,000 variants. We found that while reciprocal sign epistasis blocked many direct paths of adaptation, such evolutionary traps could be circumvented by indirect paths through genotype space involving gain and subsequent loss of mutations. These indirect paths alleviate the constraint on adaptive protein evolution, suggesting that the heretofore neglected dimensions of sequence space may change our views on how proteins evolve.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item