Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

PPAR-γ agonist rosiglitazone reverses perinatal nicotine exposure-induced asthma in rat offspring

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398871/
No data is associated with this publication.
Abstract

In a rat model, downregulation of homeostatic mesenchymal peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling following perinatal nicotine exposure contributes to offspring asthma, which can be effectively prevented by concomitant administration of PPAR-γ agonist rosiglitazone (RGZ). However, whether perinatal nicotine exposure-induced asthma can be reversed is not known. We hypothesized that perinatal nicotine exposure-induced asthma would be reversed by PPAR-γ agonist RGZ. Pregnant rat dams received either placebo or nicotine from embryonic day 6 until term. Following spontaneous delivery at term, dams were continued on the assigned treatments, up to postnatal day 21 (PND21). However, at delivery, pups were divided into two groups; one group received placebo, and the other group received RGZ from PND1 to PND21. At PND21, pulmonary function and the expression of mesenchymal markers of airway contractility (α-smooth muscle actin, calponin, fibronectin, collagen I, and collagen III) were determined by immunoblotting and immunostaining for the evidence of reversibility of perinatal nicotine exposure-induced lung effects. Compared with controls, perinatal nicotine exposure caused 1) a significant increase in airway resistance and a decrease in airway compliance following methacholine challenge, 2) a significant increase in acetylcholine-induced tracheal constriction, and 3) increased pulmonary and tracheal expression of the mesenchymal markers of contractility. Treatment with RGZ, starting on PND1, reversed all of the nicotine-induced molecular and functional pulmonary effects, virtually normalizing the pulmonary phenotype of the treated animals. We conclude that perinatal nicotine exposure-induced functional and molecular alterations in upper and lower airways can be reversed by PPAR-γ agonist RGZ, allowing an effective intervention even when started postnatally.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item