Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Formation and stability of gas-phase o -benzoquinone from oxidation of ortho -hydroxyphenyl: a combined neutral and distonic radical study

Abstract

Gas-phase product detection studies of o-hydroxyphenyl radical and O2 are reported at 373, 500, and 600 K, at 4 Torr (533.3 Pa), using VUV time-resolved synchrotron photoionisation mass spectrometry. The dominant products are assigned as o-benzoquinone (C6H4O2, m/z 108) and cyclopentadienone (C5H4O, m/z 80). It is concluded that cyclopentadienone forms as a secondary product from prompt decomposition of o-benzoquinone (and dissociative ionization of o-benzoquinone may contribute to the m/z 80 signal at photon energies ≳9.8 eV). Ion-trap reactions of the distonic o-hydroxyphenyl analogue, the 5-ammonium-2-hydroxyphenyl radical cation, with O2 are also reported and concur with the assignment of o-benzoquinone as the dominant product. The ion-trap study also provides support for a mechanism where cyclopentadienone is produced by decarbonylation of o-benzoquinone. Kinetic studies compare oxidation of the ammonium-tagged o-hydroxyphenyl and o-methylphenyl radical cations along with trimethylammonium-tagged analogues. Reaction efficiencies are found to be ca. 5% for both charge-tagged o-hydroxyphenyl and o-methylphenyl radicals irrespective of the charged substituent. G3X-K quantum chemical calculations are deployed to rationalise experimental results for o-hydroxyphenyl + O2 and its charge-tagged counterpart. The prevailing reaction mechanism, after O2 addition, involves a facile 1,5-H shift in the peroxyl radical and subsequent elimination of OH to yield o-benzoquinone that is reminiscent of the Waddington mechanism for β-hydroxyperoxyl radicals. These results suggest o-hydroxyphenyl + O2 and decarbonylation of o-benzoquinone serve as plausible OH and CO sources in combustion.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.