Skip to main content
eScholarship
Open Access Publications from the University of California
Cover page of Efficient separation of carbon dioxide and methane in high-pressure and wet gas mixtures using Zr-MOF-808

Efficient separation of carbon dioxide and methane in high-pressure and wet gas mixtures using Zr-MOF-808

(2025)

The capture and separation of carbon dioxide (CO2) has been the focus of a plethora of research in order to mitigate its emissions and contribute to global development. Given that CO2 is commonly found in natural gas streams, there have been efforts to seek more efficient materials to separate gaseous mixtures such as CO2/CH4. However, there are only a few reports regarding adsorption processes within pressurized systems. In the offshore scenario, natural gas streams still exhibit high moisture content, necessitating a greater understanding of processes in moist systems. In this article, a metal-organic framework synthesis based on zirconium (MOF-808) was carried out through a conventional solvothermal method and autoclave for the adsorption of CO2 and CH4 under different temperatures (45–65 °C) and pressures up to 100 bar. Furthermore, the adsorption of humid CO2 was evaluated using thermal analyses. The MOF-808 synthesized in autoclave showed a high surface area (1502 m2/g), a high capacity for CO2 adsorption at 50 bar and 45 °C and had a low selectivity to capture CH4 molecules. It also exhibited a fine stability after five cycles of CO2 adsorption and desorption at 50 bar and 45 °C − as confirmed by structural post-adsorption analyses while maintaining its adsorption capacity and crystallinity. Furthermore, it can be observed that the adsorption capacity increased in a humid environment, and that the adsorbent remained stable after adsorption cycles in the presence of moisture. Finally, it was possible to confirm the occurrence of physisorption processes through nuclear magnetic resonance (NMR) analyses, thus validating the choice of mild temperatures for regeneration and contributing to the reduction of energy consumption in processing plants.

Cover page of Quantum-centric supercomputing for materials science: A perspective on challenges and future directions

Quantum-centric supercomputing for materials science: A perspective on challenges and future directions

(2024)

Computational models are an essential tool for the design, characterization, and discovery of novel materials. Computationally hard tasks in materials science stretch the limits of existing high-performance supercomputing centers, consuming much of their resources for simulation, analysis, and data processing. Quantum computing, on the other hand, is an emerging technology with the potential to accelerate many of the computational tasks needed for materials science. In order to do that, the quantum technology must interact with conventional high-performance computing in several ways: approximate results validation, identification of hard problems, and synergies in quantum-centric supercomputing. In this paper, we provide a perspective on how quantum-centric supercomputing can help address critical computational problems in materials science, the challenges to face in order to solve representative use cases, and new suggested directions.

Cover page of Sodium Carbonate ion complexes modify water structure at electrode interfaces

Sodium Carbonate ion complexes modify water structure at electrode interfaces

(2024)

Water structure near electrode interfaces may play an important role in controlling CO2 electroreduction. Using plasmon-enhanced vibrational sum frequency generation spectroscopy, we demonstrate the emergence of an interfacial water subpopulation with large electric fields along their OH bonds, when Na2CO3 ions are present near the electrode under applied potential. With molecular dynamics simulations, we show that the approach of aqueous Na2CO3 to electrodes is coupled to the formation of structured and oriented ion complexes, and that the emergent water population is associated with the first solvation shell of these complexes. This water subpopulation is seen even when the sole source of CO32− is its in-situ generation from CO2, indicating that the interfacial species investigated here are likely ubiquitous in CO2 electroreduction contexts.

Cover page of Dynamic Evolution of Copper Nanowires during CO2 Reduction Probed by Operando Electrochemical 4D-STEM and X‑ray Spectroscopy

Dynamic Evolution of Copper Nanowires during CO2 Reduction Probed by Operando Electrochemical 4D-STEM and X‑ray Spectroscopy

(2024)

Nanowires have emerged as an important family of one-dimensional (1D) nanomaterials owing to their exceptional optical, electrical, and chemical properties. In particular, Cu nanowires (NWs) show promising applications in catalyzing the challenging electrochemical CO2 reduction reaction (CO2RR) to valuable chemical fuels. Despite early reports showing morphological changes of Cu NWs after CO2RR processes, their structural evolution and the resulting exact nature of active Cu sites remain largely elusive, which calls for the development of multimodal operando time-resolved nm-scale methods. Here, we report that well-defined 1D copper nanowires, with a diameter of around 30 nm, have a metallic 5-fold twinned Cu core and around 4 nm Cu2O shell. Operando electrochemical liquid-cell scanning transmission electron microscopy (EC-STEM) showed that as-synthesized Cu@Cu2O NWs experienced electroreduction of surface Cu2O to disordered (spongy) metallic Cu shell (Cu@CuS NWs) under CO2RR relevant conditions. Cu@CuS NWs further underwent a CO-driven Cu migration leading to a complete evolution to polycrystalline metallic Cu nanograins. Operando electrochemical four-dimensional (4D) STEM in liquid, assisted by machine learning, interrogates the complex structures of Cu nanograin boundaries. Correlative operando synchrotron-based high-energy-resolution X-ray absorption spectroscopy unambiguously probes the electroreduction of Cu@Cu2O to fully metallic Cu nanograins followed by partial reoxidation of surface Cu during postelectrolysis air exposure. This study shows that Cu nanowires evolve into completely different metallic Cu nanograin structures supporting the operando (operating) active sites for the CO2RR.

Removal of Chromium and Arsenic from Water Using Polyol-Functionalized Porous Aromatic Frameworks.

(2024)

Chromium and arsenic are two of the most problematic water pollutants due to their high toxicity and prevalence in various water streams. While adsorption and ion-exchange processes have been applied for the efficient removal of numerous toxic contaminants, including heavy metals, from water, these technologies display relatively low overall performances and stabilities for the remediation of chromium and arsenic oxyanions. This work presents the use of polyol-functionalized porous aromatic framework (PAF) adsorbent materials that use chelation, ion-exchange, redox activity, and hydrogen-bonding interactions for the highly selective capture of chromium and arsenic from water. The chromium and arsenic binding mechanisms within these materials are probed using an array of characterization techniques, including X-ray absorption and X-ray photoelectron spectroscopies. Adsorption studies reveal that the functionalized porous aromatic frameworks (PAFs) achieve selective, near-instantaneous (reaching equilibrium capacity within 10 s), and high-capacity (2.5 mmol/g) binding performances owing to their targeted chemistries, high porosities, and high functional group loadings. Cycling tests further demonstrate that the top-performing PAF material can be recycled using mild acid and base washes without any measurable performance loss over at least ten adsorption-desorption cycles. Finally, we establish chemical design principles enabling the selective removal of chromium, arsenic, and boron from water. To achieve this, we show that PAFs appended with analogous binding groups exhibit differences in adsorption behavior, revealing the importance of binding group length and chemical identity.

Cover page of Imaging a solvent‐swollen polymer gel network by open liquid transmission electron microscopy

Imaging a solvent‐swollen polymer gel network by open liquid transmission electron microscopy

(2024)

Visualizing the network of a solvent-swollen polymer gel remains problematic. To address this challenge, open transmission electron microscopy (TEM) was applied to thin gel films permeated by a nonvolatile ionic liquid. The targeted physical gels were prepared by cooling concentrated solutions of poly(ethylene glycol) in 1-ethyl-3-methyl imidazolium ethyl sulfate [EMIM][EtSO4]. During the cooling, gelation occurred by a frustrated crystallization of the dissolved polymer, leading to a percolated, solvent-permeated semicrystalline network in which nanoscale polymer crystals acted as crosslinks. Crystalline features ranging from ~5 to ~200 nm were observed, with the visible network strands dominantly consisting of long curvilinear crystallites of ~15–20 nm diameter. Nascent spherulites irregularly decorated the network, creating a complex structural hierarchy that complicated analyses. Lacking diffraction contrast, TEM did not visualize the many disordered, fully solvated PEG chains present in the voids between crystals. Recognizing that a network's three dimensionality is ambiguous when assessed through two-dimensional microscopy projections, a small gel region was studied by TEM tomography, revealing a nearly isotropic three-dimensional arrangement of the curvilinear crystallites, which displayed remarkably uniform cylindrical cross sections.

Cover page of Crystallization of Bottlebrush Statistical Copolymers of Polystyrene and Poly(ethylene oxide)

Crystallization of Bottlebrush Statistical Copolymers of Polystyrene and Poly(ethylene oxide)

(2024)

Bottlebrush statistical copolymers (BSCPs) with poly(ethylene oxide) (PEO) and polystyrene (PS) side chains grafted to a polynorbornene (PNB) backbone were synthesized by ring-opening metathesis polymerization (ROMP). The impact of the glassy PS side chains on the crystallization of the PEO side chains as a function of the backbone length, grafting densities, and fraction of the PS and PEO side chains is described. The bottlebrush architecture, where the side chains are anchored to the backbone, inherently constrains the mobility of PEO. Compared with the bulk crystallization temperature of PEO, the higher glass transition temperature of PS places further constraints on PEO crystallization. The limited mobility of PEO leads to cold crystallization behavior during heating. Reduced grafting densities, in turn, reduce side-chain crowding, leading to less extended pendant structures. The degree of crystallinity of PEO was found to decrease at lower grafting densities to a point where crystallization was not observed. The average distance between bottlebrush backbones increased linearly with the backbone length, suggesting that the backbone forms a distinct mesodomain. For BSCPs with asymmetric volume fractions of PS and PEO side chains, the degree of crystallinity of PEO increases with a change from cold crystallization to normal nucleation and growth during cooling, as a result of reduced constraints on PEO mobility by the glassy PS side chains.

Cover page of Nacre-like surface nanolaminates enhance fatigue resistance of pure titanium.

Nacre-like surface nanolaminates enhance fatigue resistance of pure titanium.

(2024)

Fatigue failure is invariably the most crucial failure mode for metallic structural components. Most microstructural strategies for enhancing fatigue resistance are effective in suppressing either crack initiation or propagation, but often do not work for both synergistically. Here, we demonstrate that this challenge can be overcome by architecting a gradient structure featuring a surface layer of nacre-like nanolaminates followed by multi-variant twinned structure in pure titanium. The polarized accommodation of highly regulated grain boundaries in the nanolaminated layer to cyclic loading enhances the structural stability against lamellar thickening and microstructure softening, thereby delaying surface roughening and thus crack nucleation. The decohesion of the nanolaminated grains along horizonal high-angle grain boundaries gives rise to an extraordinarily high frequency (≈1.7 × 103 times per mm) of fatigue crack deflection, effectively reducing fatigue crack propagation rate (by 2 orders of magnitude lower than the homogeneous coarse-grained counterpart). These intriguing features of the surface nanolaminates, along with the various toughening mechanisms activated in the subsurface twinned structure, result in a fatigue resistance that significantly exceeds those of the homogeneous and gradient structures with equiaxed grains. Our work on architecting the surface nanolaminates in gradient structure provides a scalable and sustainable strategy for designing more fatigue-resistant alloys.

Cover page of Enhanced cold plasma hydrogenation with glycerol as hydrogen source for production of trans-fat-free margarine.

Enhanced cold plasma hydrogenation with glycerol as hydrogen source for production of trans-fat-free margarine.

(2024)

The quest for better nutritious foods has encouraged novel scientific investigations to find trans-fat reduction methods. This research proposes an innovative approach for the production of healthier trans-fat-free margarine from palm oil by the use of dielectric barrier discharge (DBD) plasma technology with glycerol serving as the principal source of hydrogen. The effectiveness of DBD plasma in hydrogenating palm olein was investigated. By employing a methodical series of experiments and thorough analytical approaches, examination of the saturated fatty acid conversion experienced its iodine value (IV) reduction from 67.16 ± 0.70 to 31.61 ± 1.10 under the optimal process parameters of 1 L min-1 He flow rate, 35 W plasma discharge power, 10 mm gap size, ambient initial temperature, and 12 h reaction time with solid texture. According to the method for producing trans-fat-free margarine in the absence of a catalyst and H2 gas, the hydrogenation rate of the prepared mixture of palm olein-glycerol was remarkably improved; the trans-fat content in the produced product was zero; the efficacy of incorporating cis- and trans-isomerization was lowered, and the method has a promising industrial application prospect.