Skip to main content
eScholarship
Open Access Publications from the University of California
Cover page of Efficient separation of carbon dioxide and methane in high-pressure and wet gas mixtures using Zr-MOF-808

Efficient separation of carbon dioxide and methane in high-pressure and wet gas mixtures using Zr-MOF-808

(2025)

The capture and separation of carbon dioxide (CO2) has been the focus of a plethora of research in order to mitigate its emissions and contribute to global development. Given that CO2 is commonly found in natural gas streams, there have been efforts to seek more efficient materials to separate gaseous mixtures such as CO2/CH4. However, there are only a few reports regarding adsorption processes within pressurized systems. In the offshore scenario, natural gas streams still exhibit high moisture content, necessitating a greater understanding of processes in moist systems. In this article, a metal-organic framework synthesis based on zirconium (MOF-808) was carried out through a conventional solvothermal method and autoclave for the adsorption of CO2 and CH4 under different temperatures (45–65 °C) and pressures up to 100 bar. Furthermore, the adsorption of humid CO2 was evaluated using thermal analyses. The MOF-808 synthesized in autoclave showed a high surface area (1502 m2/g), a high capacity for CO2 adsorption at 50 bar and 45 °C and had a low selectivity to capture CH4 molecules. It also exhibited a fine stability after five cycles of CO2 adsorption and desorption at 50 bar and 45 °C − as confirmed by structural post-adsorption analyses while maintaining its adsorption capacity and crystallinity. Furthermore, it can be observed that the adsorption capacity increased in a humid environment, and that the adsorbent remained stable after adsorption cycles in the presence of moisture. Finally, it was possible to confirm the occurrence of physisorption processes through nuclear magnetic resonance (NMR) analyses, thus validating the choice of mild temperatures for regeneration and contributing to the reduction of energy consumption in processing plants.

Cover page of A simple model for short-range ordering kinetics in multi-principal element alloys

A simple model for short-range ordering kinetics in multi-principal element alloys

(2024)

Short-range ordering (SRO) in multi-principal element alloys influences material properties such as strength and corrosion. While some degree of SRO is expected at equilibrium, predicting the kinetics of its formation is challenging. We present a simplified isothermal concentration-wave (CW) model to estimate an effective relaxation time of SRO formation. Estimates from the CW model agree to within a factor of five with relaxation times obtained from kinetic Monte Carlo (kMC) simulations when above the highest ordering instability temperature. The advantage of the CW model is that it only requires mobility and thermodynamic parameters, which are readily obtained from alloy mobility databases and Metropolis Monte Carlo simulations, respectively. The simple parameterization of the CW model and its analytical nature makes it an attractive tool for the design of processing conditions to promote or suppress SRO in multicomponent alloys.

Cover page of Quantum-centric supercomputing for materials science: A perspective on challenges and future directions

Quantum-centric supercomputing for materials science: A perspective on challenges and future directions

(2024)

Computational models are an essential tool for the design, characterization, and discovery of novel materials. Computationally hard tasks in materials science stretch the limits of existing high-performance supercomputing centers, consuming much of their resources for simulation, analysis, and data processing. Quantum computing, on the other hand, is an emerging technology with the potential to accelerate many of the computational tasks needed for materials science. In order to do that, the quantum technology must interact with conventional high-performance computing in several ways: approximate results validation, identification of hard problems, and synergies in quantum-centric supercomputing. In this paper, we provide a perspective on how quantum-centric supercomputing can help address critical computational problems in materials science, the challenges to face in order to solve representative use cases, and new suggested directions.

Cover page of 3D Lead‐Organoselenide‐Halide Perovskites and their Mixed‐Chalcogenide and Mixed‐Halide Alloys

3D Lead‐Organoselenide‐Halide Perovskites and their Mixed‐Chalcogenide and Mixed‐Halide Alloys

(2024)

Abstract: We incorporate Se into the 3D halide perovskite framework using the zwitterionic ligand: SeCYS (+NH3(CH2)2Se−), which occupies both the X− and A+ sites in the prototypical ABX3 perovskite. The new organoselenide‐halide perovskites: (SeCYS)PbX2 (X=Cl, Br) expand upon the recently discovered organosulfide‐halide perovskites. Single‐crystal X‐ray diffraction and pair distribution function analysis reveal the average structures of the organoselenide‐halide perovskites, whereas the local lead coordination environments and their distributions were probed through solid‐state 77Se and 207Pb NMR, complemented by theoretical simulations. Density functional theory calculations illustrate that the band structures of (SeCYS)PbX2 largely resemble those of their S analogs, with similar band dispersion patterns, yet with a considerable band gap decrease. Optical absorbance measurements indeed show band gaps of 2.07 and 1.86 eV for (SeCYS)PbX2 with X=Cl and Br, respectively. We further demonstrate routes to alloying the halides (Cl, Br) and chalcogenides (S, Se) continuously tuning the band gap from 1.86 to 2.31 eV–straddling the ideal range for tandem solar cells or visible‐light photocatalysis. The comprehensive description of the average and local structures, and how they can fine‐tune the band gap and potential trap states, respectively, establishes the foundation for understanding this new perovskite family, which combines solid‐state and organo‐main‐group chemistry.

Cover page of Giant resistance switch in twisted transition metal dichalcogenide tunnel junctions

Giant resistance switch in twisted transition metal dichalcogenide tunnel junctions

(2024)

Resistance switching in multilayer structures are typically based on materials possessing ferroic orders. Here we predict an extremely large resistance switching based on the relative spin-orbit splitting in twisted transition metal dichalcogenide (TMD) monolayers tunnel junctions. Because of the valence band spin splitting which depends on the valley index in the Brillouin zone, the perpendicular electronic transport through the junction depends on the relative reciprocal space overlap of the spin-dependent Fermi surfaces of both layers, which can be tuned by twisting one layer. Our quantum transport calculations reveal a switching resistance larger than 10 6 % when the relative alignment of TMDs goes from 0∘ to 60∘ and when the angle is kept fixed at 60∘ and the Fermi level is varied. By creating vacancies, we evaluate how inter-valley scattering affects the efficiency and find that the resistance switching remains large ( 10 4 % ) for typical values of vacancy concentration. Not only should this resistance switching be observed at room temperature due to the large spin splitting, but our results also show how twist angle engineering and control of van der Waals heterostructures could be used for next-generation memory and electronic applications.

Cover page of Mechanochemically accelerated deconstruction of chemically recyclable plastics

Mechanochemically accelerated deconstruction of chemically recyclable plastics

(2024)

Plastics redesign for circularity has primarily focused on monomer chemistries enabling faster deconstruction rates concomitant with high monomer yields. Yet, during deconstruction, polymer chains interact with their reaction medium, which remains underexplored in polymer reactivity. Here, we show that, when plastics are deconstructed in reaction media that promote swelling, initial rates are accelerated by over sixfold beyond those in small-molecule analogs. This unexpected acceleration is primarily tied to mechanochemical activation of strained polymer chains; however, changes in the activity of water under polymer confinement and bond activation in solvent-separated ion pairs are also important. Together, deconstruction times can be shortened by seven times by codesigning plastics and their deconstruction processes.

Cover page of The 4D Camera: An 87 kHz Direct Electron Detector for Scanning/Transmission Electron Microscopy

The 4D Camera: An 87 kHz Direct Electron Detector for Scanning/Transmission Electron Microscopy

(2024)

We describe the development, operation, and application of the 4D Camera-a 576 by 576 pixel active pixel sensor for scanning/transmission electron microscopy which operates at 87,000 Hz. The detector generates data at ∼480 Gbit/s which is captured by dedicated receiver computers with a parallelized software infrastructure that has been implemented to process the resulting 10-700 Gigabyte-sized raw datasets. The back illuminated detector provides the ability to detect single electron events at accelerating voltages from 30 to 300 kV. Through electron counting, the resulting sparse data sets are reduced in size by 10--300× compared to the raw data, and open-source sparsity-based processing algorithms offer rapid data analysis. The high frame rate allows for large and complex scanning diffraction experiments to be accomplished with typical scanning transmission electron microscopy scanning parameters.

Cover page of Long Period Voltage Oscillations Associated with Reaction Changes between CO2 Reduction and H2 Formation in Zero-Gap-Type CO2 Electrochemical Reactor

Long Period Voltage Oscillations Associated with Reaction Changes between CO2 Reduction and H2 Formation in Zero-Gap-Type CO2 Electrochemical Reactor

(2024)

Zero-gap-type reactors with gas diffusion electrodes (GDE) that facilitate the CO2 reduction reaction (CO2RR) are attractive due to their high current density and low applied voltage. These reactors, however, suffer from salt precipitation and anolyte flooding of the cathode, leading to a short lifetime. Here, using a zero-gap reactor with a transparent cathode end plate, we report periodic voltage oscillations under constant current operation. Increases in cell voltages occur at the same time as the reactor switches from the hydrogen evolution reaction (HER) to predominant CO2RR; decreases in cell voltage occur with the switch from the CO2RR to HER. Further, real time visual observations show that salt precipitation occurs during the CO2RR, whereas salt dissolution occurs during the HER. Slow flooding triggers the transition from the CO2RR to HER. A number of processes combine to slowly reduce the water content in the microporous layer, which triggers the transition back to the CO2RR.

Cover page of Evaluating Cryo‐TEM Reconstruction Accuracy of Self‐Assembled Polymer Nanostructures

Evaluating Cryo‐TEM Reconstruction Accuracy of Self‐Assembled Polymer Nanostructures

(2024)

Cryogenic transmission electron microscopy (cryo-TEM) combined with single particle analysis (SPA) is an emerging imaging approach for soft materials. However, the accuracy of SPA-reconstructed nanostructures, particularly those formed by synthetic polymers, remains uncertain due to potential packing heterogeneity of the nanostructures. In this study, the combination of molecular dynamics (MD) simulations and image simulations is utilized to validate the accuracy of cryo-TEM 3D reconstructions of self-assembled polypeptoid fibril nanostructures. Using CryoSPARC software, image simulations, 2D classifications, ab initio reconstructions, and homogenous refinements are performed. By comparing the results with atomic models, the recovery of molecular details is assessed, heterogeneous structures are identified, and the influence of extraction location on the reconstructions is evaluated. These findings confirm the fidelity of single particle analysis in accurately resolving complex structural characteristics and heterogeneous structures, exhibiting its potential as a valuable tool for detailed structural analysis of synthetic polymers and soft materials.