Skip to main content
eScholarship
Open Access Publications from the University of California
Cover page of Imaging and structure analysis of ferroelectric domains, domain walls, and vortices by scanning electron diffraction

Imaging and structure analysis of ferroelectric domains, domain walls, and vortices by scanning electron diffraction

(2024)

Direct electron detectors in scanning transmission electron microscopy give unprecedented possibilities for structure analysis at the nanoscale. In electronic and quantum materials, this new capability gives access to, for example, emergent chiral structures and symmetry-breaking distortions that underpin functional properties. Quantifying nanoscale structural features with statistical significance, however, is complicated by the subtleties of dynamic diffraction and coexisting contrast mechanisms, which often results in a low signal-to-noise ratio and the superposition of multiple signals that are challenging to deconvolute. Here we apply scanning electron diffraction to explore local polar distortions in the uniaxial ferroelectric Er(Mn,Ti)O3. Using a custom-designed convolutional autoencoder with bespoke regularization, we demonstrate that subtle variations in the scattering signatures of ferroelectric domains, domain walls, and vortex textures can readily be disentangled with statistical significance and separated from extrinsic contributions due to, e.g., variations in specimen thickness or bending. The work demonstrates a pathway to quantitatively measure symmetry-breaking distortions across large areas, mapping structural changes at interfaces and topological structures with nanoscale spatial resolution.

Cover page of Controlling volume fluctuations for studies of critical phenomena in nuclear collisions

Controlling volume fluctuations for studies of critical phenomena in nuclear collisions

(2024)

We generalize and extend the recently proposed method [1] to account for contributions of system size (or volume/participant) fluctuations to the experimentally measured moments of particle multiplicity distributions. We find that in the general case there are additional biases which are not directly accessible to experiment. These biases are, however, parametrically suppressed if the multiplicity of the particles of interest is small compared to the total charged-particle multiplicity, e.g., in the case of proton number fluctuations at top RHIC and LHC energies. They are also small if the multiplicity distribution of charged particles per wounded nucleon is close to the Poissonian limit, which is the case at low energy nuclear collisions, e.g., at GSI/SIS18. We further find that mixed events are not necessarily needed to extract the correction for volume fluctuations. We provide the formulas to correct pure and mixed cumulants of particle multiplicity distributions up to any order together with their associated biases.

Cover page of Data-driven background model for the CUORE experiment

Data-driven background model for the CUORE experiment

(2024)

We present the model we developed to reconstruct the CUORE radioactive background based on the analysis of an experimental exposure of 1038.4 kg yr. The data reconstruction relies on a simultaneous Bayesian fit applied to energy spectra over a broad energy range. The high granularity of the CUORE detector, together with the large exposure and extended stable operations, allow for an in-depth exploration of both spatial and time dependence of backgrounds. We achieve high sensitivity to both bulk and surface activities of the materials of the setup, detecting levels as low as 10 nBq kg-1 and 0.1 nBq cm-2, respectively. We compare the contamination levels we extract from the background model with prior radio-assay data, which informs future background risk mitigation strategies. The results of this background model play a crucial role in constructing the background budget for the CUPID experiment as it will exploit the same CUORE infrastructure.

Cover page of The Landscape of Thermal Transients from Supernovae Interacting with a Circumstellar Medium

The Landscape of Thermal Transients from Supernovae Interacting with a Circumstellar Medium

(2024)

Abstract: The interaction of supernova ejecta with a surrounding circumstellar medium (CSM) generates a strong shock, which can convert ejecta kinetic energy into observable radiation. Given the diversity of potential CSM structures (arising from diverse mass-loss processes such as late-stage stellar outbursts, binary interaction, and winds), the resulting transients can display a wide range of light-curve morphologies. We provide a framework for classifying the transients arising from interaction with a spherical CSM shell. The light curves are decomposed into five consecutive phases, starting from the onset of interaction and extending through shock breakout and subsequent shock cooling. The relative prominence of each phase in the light curve is determined by two dimensionless quantities representing the CSM-to-ejecta mass ratio η, and the breakout parameter ξ. These two parameters define four light-curve morphology classes, where each class is characterized by the location of the shock breakout and the degree of deceleration as the shock sweeps up the CSM. We compile analytic scaling relations connecting the luminosity and duration of each light-curve phase to the physical parameters. We then run a grid of radiation hydrodynamics simulations for a wide range of ejecta and CSM parameters to numerically explore the landscape of interaction light curves, and to calibrate and confirm the analytic scalings. We connect our theoretical framework to several case studies of observed transients, highlighting the relevance in explaining slow-rising and superluminous supernovae, fast blue optical transients, and double-peaked light curves.

Cover page of Searching for beyond the Standard Model physics using the improved description of 100Mo 2νββ decay spectral shape with CUPID-Mo

Searching for beyond the Standard Model physics using the improved description of 100Mo 2νββ decay spectral shape with CUPID-Mo

(2024)

The current experiments searching for neutrinoless double-β (0νββ) decay also collect large statistics of Standard Model allowed two-neutrino double-β (2νββ) decay events. These can be used to search for Beyond Standard Model (BSM) physics via 2νββ decay spectral distortions. 100Mo has a natural advantage due to its relatively short half-life, allowing higher 2νββ decay statistics at equal exposures compared to the other isotopes. We demonstrate the potential of the dual read-out bolometric technique exploiting a 100Mo exposure of 1.47 kg × years, acquired in the CUPID-Mo experiment at the Modane underground laboratory (France). We set limits on 0νββ decays with the emission of one or more Majorons, on 2νββ decay with Lorentz violation, and 2νββ decay with a sterile neutrino emission. In this analysis, we investigate the systematic uncertainty induced by modeling the 2νββ decay spectral shape parameterized through an improved model, an effect never considered before. This work motivates searches for BSM processes in the upcoming CUPID experiment, which will collect the largest amount of 2νββ decay events among the next-generation experiments.

Cover page of Search for charged excited states of dark matter with KamLAND-Zen

Search for charged excited states of dark matter with KamLAND-Zen

(2024)

Particle dark matter could belong to a multiplet that includes an electrically charged state. WIMP dark matter (χ0) accompanied by a negatively charged excited state (χ−) with a small mass difference (e.g. < 20 MeV) can form a bound-state with a nucleus such as xenon. This bound-state formation is rare and the released energy is O(1−10) MeV depending on the nucleus, making large liquid scintillator detectors suitable for detection. We searched for bound-state formation events with xenon in two experimental phases of the KamLAND-Zen experiment, a xenon-doped liquid scintillator detector. No statistically significant events were observed. For a benchmark parameter set of WIMP mass mχ0=1 TeV and mass difference Δm=17 MeV, we set the most stringent upper limits on the recombination cross section times velocity 〈σv〉 and the decay-width of χ− to 9.2×10−30 cm3/s and 8.7×10−14 GeV, respectively at 90% confidence level.

Cover page of Experimental neutrino physics in a nuclear landscape

Experimental neutrino physics in a nuclear landscape

(2024)

There are profound connections between neutrino physics and nuclear experiments. Exceptionally precise measurements of single and double beta-decay spectra illuminate the scale and nature of neutrino mass and may finally answer the question of whether neutrinos are their own anti-matter counterparts. Neutrino-nucleus scattering underpins oscillation experiments and probes nuclear structure, neutrinos offer a rare vantage point into collapsing stars and nuclear fission reactors and techniques pioneered in neutrino nuclear physics experiments are advancing quantum sensing technologies. In this article, we review current and planned efforts at the intersection of neutrino and nuclear experiments. This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.

Cover page of Photon strength functions and nuclear level densities: invaluable input for nucleosynthesis

Photon strength functions and nuclear level densities: invaluable input for nucleosynthesis

(2024)

The pivotal role of nuclear physics in nucleosynthesis processes is being investigated, in particular the intricate influence of photon strength functions (PSFs) and nuclear level densities (NLDs) on shaping the outcomes of the i-, r- and p-processes. Exploring diverse NLD and PSF model combinations uncovers large uncertainties for (p,[Formula: see text]), (n,[Formula: see text]) and ([Formula: see text],[Formula: see text]) rates across many regions of the nuclear chart. These lead to potentially significant abundance variations of the nucleosynthesis processes and highlight the importance of accurate experimental nuclear data. Theoretical insights and advanced experimental techniques lay the ground work for profound understanding that can be gained of nucleosynthesis mechanisms and the origin of the elements. Recent results further underscore the effect of PSF and NLD data and its contribution to understanding abundance distributions and refining knowledge of the intricate nucleosynthesis processes. This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.

Cover page of Modeling the Compton Camera Response for Extended Voxel Sources

Modeling the Compton Camera Response for Extended Voxel Sources

(2024)

The analysis and interpretation of coincidence events in a Compton camera requires the comparison of the expected rates of observed events from sources with various emission rates, energy spectra and spatial distributions. Radioactive source distributions are often represented by the activity distributed among numerous voxels; each voxel having uniform internal activity and spectra within a cube. In this paper a mathematical model is constructed that predicts the expected rate of coincident Compton events from the rate of emissions from a single voxel source. This detailed model incorporates (1) the finite voxel size, (2) the blurring of the “Compton cone” by the limitations of energy resolution in the detectors and (3) the uncertainty in the Compton cone-axis due to the limited spatial resolution and ‘lever-arm’ separation between the coincident interactions. The resultant rates can be used to generate the system response matrix for source reconstruction and, therefore, are directly applicable in list-mode MLEM source reconstruction algorithms.

  • 1 supplemental ZIP