Skip to main content
eScholarship
Open Access Publications from the University of California

Software Performance of the ATLAS Track Reconstruction for LHC Run 3

(2024)

Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pile-up) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two.

Cover page of Deep Generative Models for Fast Photon Shower Simulation in ATLAS

Deep Generative Models for Fast Photon Shower Simulation in ATLAS

(2024)

The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques.

Probing the scalar WIMP-pion coupling with the first LUX-ZEPLIN data

(2024)

Weakly interacting massive particles (WIMPs) may interact with a virtual pion that is exchanged between nucleons. This interaction channel is important to consider in models where the spin-independent isoscalar channel is suppressed. Using data from the first science run of the LUX-ZEPLIN dark matter experiment, containing 60 live days of data in a 5.5 tonne fiducial mass of liquid xenon, we report the results on a search for WIMP-pion interactions. We observe no significant excess and set an upper limit of 1.5 × 10−46 cm2 at a 90% confidence level for a WIMP mass of 33 GeV/c2 for this interaction.

The data acquisition system of the LZ dark matter detector: FADR

(2024)

The Data Acquisition System (DAQ) for the LUX-ZEPLIN (LZ) dark matter detector is described. The signals from 745 PMTs, distributed across three subsystems, are sampled with 100-MHz 32-channel digitizers (DDC-32s). A basic waveform analysis is carried out on the on-board Field Programmable Gate Arrays (FPGAs) to extract information about the observed scintillation and electroluminescence signals. This information is used to determine if the digitized waveforms should be preserved for offline analysis. The system is designed around the Kintex-7 FPGA. In addition to digitizing the PMT signals and providing basic event selection in real time, the flexibility provided by the use of FPGAs allows us to monitor the performance of the detector and the DAQ in parallel to normal data acquisition. The hardware and software/firmware of this FPGA-based Architecture for Data acquisition and Realtime monitoring (FADR) are discussed and performance measurements are described.

Cover page of Complementarity for a dynamical black hole

Complementarity for a dynamical black hole

(2024)

Black hole complementarity posits that the interior of a black hole is not independent from its Hawking radiation. This leads to an apparent violation of causality: the interior can be acausally affected by operators acting solely on the radiation. We argue that this perspective is misleading and that the black hole interior must be viewed as existing in the causal past of the Hawking radiation, despite the fact that they are spacelike separated in the semiclassical description. Consequently, no operation on the Hawking radiation - no matter how complex - can affect the experience of an infalling observer. The black hole interior and the radiation only appear spacelike separated in the semiclassical description because an infalling observer's ability to access complex information is limited; the chaotic dynamics on the horizon, as viewed from the exterior, then converts any effect caused by such an observer to information in the Hawking radiation which cannot be accessed at the semiclassical level. We arrive at the picture described above by considering a unitary exterior description in which the flow of information is strictly causal, which we extend to apply throughout the entire history of black hole evolution, including its formation. This description uses the stretched event horizon as an inner edge of spacetime, on which the information inside is holographically encoded. We argue that the global spacetime picture arises from coarse graining over black hole microstates, and discuss its relationship with the exterior description.

Determination of the Relative Sign of the Higgs Boson Couplings to W and Z Bosons Using WH Production via Vector-Boson Fusion with the ATLAS Detector

(2024)

The associated production of Higgs and W bosons via vector-boson fusion is highly sensitive to the relative sign of the Higgs boson couplings to W and Z bosons. In this Letter, two searches for this process are presented, using 140  fb−1 of proton-proton collision data at s=13  TeV recorded by the ATLAS detector at the LHC. The first search targets scenarios with opposite-sign couplings of the W and Z bosons to the Higgs boson, while the second targets standard model-like scenarios with same-sign couplings. Both analyses consider Higgs boson decays into a pair of b quarks and W boson decays with an electron or muon. The data exclude the opposite-sign coupling hypothesis with a significance beyond 5σ, and the observed (expected) upper limit set on the cross section for vector-boson fusion WH production is 9.0 (8.7) times the standard model value at 95% confidence level. © 2024 CERN, for the ATLAS Collaboration 2024 CERN

Cover page of Precise test of lepton flavour universality in \(\varvec{W}\)-boson decays into muons and electrons in \(\varvec{pp}\) collisions at \(\varvec{\sqrt{s}}=13\,\text {T}\text {e}\hspace{-1.00006pt}\text {V} \) with the ATLAS detector

Precise test of lepton flavour universality in \(\varvec{W}\)-boson decays into muons and electrons in \(\varvec{pp}\) collisions at \(\varvec{\sqrt{s}}=13\,\text {T}\text {e}\hspace{-1.00006pt}\text {V} \) with the ATLAS detector

(2024)

Abstract: The ratio of branching ratios of the W boson to muons and electrons, $$R^{\,\mu /e}_W={{\mathcal {B}}(W\rightarrow \mu u )}$$ R W μ / e = B ( W → μ ν ) /$${{\mathcal {B}}(W\rightarrow e u )}$$ B ( W → e ν ) , has been measured using $$140\,\text{ fb}^{-1}\,$$ 140 fb - 1 of pp collision data at $$\sqrt{s}=13$$ s = 13  $$\text {T}\text {e}\hspace{-1.00006pt}\text {V}$$ Te V collected with the ATLAS detector at the LHC, probing the universality of lepton couplings. The ratio is obtained from measurements of the $$t\bar{t}$$ t t ¯ production cross-section in the ee, $$e\mu $$ e μ and $$\mu \mu $$ μ μ dilepton final states. To reduce systematic uncertainties, it is normalised by the square root of the corresponding ratio $$R^{\,\mu \mu /ee}_Z$$ R Z μ μ / e e for the Z boson measured in inclusive $$Z\rightarrow ee$$ Z → e e and $$Z\rightarrow \mu \mu $$ Z → μ μ events. By using the precise value of $$R^{\,\mu \mu /ee}_Z$$ R Z μ μ / e e determined from $$e^+e^-$$ e + e - colliders, the ratio $$R^{\,\mu /e}_W$$ R W μ / e is determined to be $$\begin{aligned} R^{\,\mu /e}_W&= 0.9995\pm 0.0022\,\mathrm {(stat)}\,\pm 0.0036\,\mathrm {(syst)}\ &\quad \pm 0.0014\,\mathrm {(ext)} . \end{aligned}$$ R W μ / e = 0.9995 ± 0.0022 ( stat ) ± 0.0036 ( syst ) ± 0.0014 ( ext ) . The three uncertainties correspond to data statistics, experimental systematics and the external measurement of $$R^{\,\mu \mu /ee}_Z$$ R Z μ μ / e e , giving a total uncertainty of 0.0045, and confirming the Standard Model assumption of lepton flavour universality in W-boson decays at the 0.5% level.

Sensor response and radiation damage effects for 3D pixels in the ATLAS IBL Detector

(2024)

Abstract: Pixel sensors in 3D technology equip the outer ends of the staves of the Insertable B Layer (IBL), the innermost layer of the ATLAS Pixel Detector, which was installed before the start of LHC Run 2 in 2015. 3D pixel sensors are expected to exhibit more tolerance to radiation damage and are the technology of choice for the innermost layer in the ATLAS tracker upgrade for the HL-LHC programme. While the LHC has delivered an integrated luminosity of  ≃ 235 fb-1 since the start of Run 2, the 3D sensors have received a non-ionising energy deposition corresponding to a fluence of ≃ 8.5 × 1014 1 MeV neutron-equivalent cm-2 averaged over the sensor area. This paper presents results of measurements of the 3D pixel sensors' response during Run 2 and the first two years of Run 3, with predictions of its evolution until the end of Run 3 in 2025. Data are compared with radiation damage simulations, based on detailed maps of the electric field in the Si substrate, at various fluence levels and bias voltage values. These results illustrate the potential of 3D technology for pixel applications in high-radiation environments.

Combination and summary of ATLAS dark matter searches interpreted in a 2HDM with a pseudo-scalar mediator using 139 fb−1 of s = 13 TeV pp collision data

(2024)

Results from a wide range of searches targeting different experimental signatures with and without missing transverse momentum (ETmiss) are used to constrain a Two-Higgs-Doublet Model (2HDM) with an additional pseudo-scalar mediating the interaction between ordinary and dark matter (2HDM+a). The analyses use up to 139 fb-1 of proton-proton collision data at a centre-of-mass energy s=13 TeV recorded with the ATLAS detector at the Large Hadron Collider during 2015-2018. The results from three of the most sensitive searches are combined statistically. These searches target signatures with large ETmiss and a leptonically decaying Z boson; large ETmiss and a Higgs boson decaying to bottom quarks; and production of charged Higgs bosons in final states with top and bottom quarks, respectively. Constraints are derived for several common and new benchmark scenarios in the 2HDM+a.

Search for decays of the Higgs boson into a pair of pseudoscalar particles decaying into bb¯τ+τ− using pp collisions at s=13  TeV with the ATLAS detector

(2024)

This paper presents a search for exotic decays of the Higgs boson into a pair of new pseudoscalar particles, H→aa, where one pseudoscalar decays into a b-quark pair and the other decays into a τ-lepton pair, in the mass range 12≤ma≤60  GeV. The analysis uses pp collision data at s=13  TeV collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 140  fb−1. No significant excess above the Standard Model (SM) prediction is observed. Assuming the SM Higgs boson production cross section, the search sets upper limits at 95% confidence level on the branching ratio of Higgs bosons decaying into bb¯τ+τ−, B(H→aa→bb¯τ+τ−), between 2.2% and 3.9% depending on the pseudoscalar mass. © 2024 CERN, for the ATLAS Collaboration 2024 CERN