Skip to main content
eScholarship
Open Access Publications from the University of California

Deep Generative Models for Fast Photon Shower Simulation in ATLAS

(2024)

Abstract: The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques.

Software Performance of the ATLAS Track Reconstruction for LHC Run 3

(2024)

Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pile-up) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two.

Study of High-Transverse-Momentum Higgs Boson Production in Association with a Vector Boson in the qqbb Final State with the ATLAS Detector

(2024)

This Letter presents the first study of Higgs boson production in association with a vector boson (V=W or Z) in the fully hadronic qqbb final state using data recorded by the ATLAS detector at the LHC in proton-proton collisions at sqrt[s]=13  TeV and corresponding to an integrated luminosity of 137  fb^{-1}. The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting b-tagging properties are used to identify jets consistent with Higgs bosons decaying into bb[over ¯]. Dominant backgrounds from multijet production are determined directly from the data, and a likelihood fit to the jet mass distribution of Higgs boson candidates is used to extract the number of signal events. The VH production cross section is measured inclusively and differentially in several ranges of Higgs boson transverse momentum: 250-450, 450-650, and greater than 650 GeV. The inclusive signal yield relative to the standard model expectation is observed to be μ=1.4_{-0.9}^{+1.0} and the corresponding cross section is 3.1±1.3(stat)_{-1.4}^{+1.8}(syst)  pb.

A precise measurement of the Z-boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS experiment at s=8 TeV

(2024)

Abstract: This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. This is in contrast to the many previous precise unfolded measurements performed in the fiducial phase space of the decay leptons. The measurement is obtained from proton–proton collision data collected by the ATLAS experiment in 2012 at $$\sqrt{s} = 8$$ s = 8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb$$^{-1}$$ - 1 . The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum $$p_{\text {T}}$$ p T and rapidity $$y$$ y are measured in the pole region, defined as $$80< m^{\ell \ell }< 100$$ 80 < m ℓ ℓ < 100 GeV, over the range $$|y| < 3.6$$ | y | < 3.6 . The total uncertainty of the normalised cross-section measurements in the peak region of the $$p_{\text {T}}$$ p T  distribution is dominated by statistical uncertainties over the full range and increases as a function of rapidity from 0.5–1.0% for $$|y| < 2.0$$ | y | < 2.0 to $$2-7\%$$ 2 - 7 % at higher rapidities. The results for the rapidity-dependent transverse momentum distributions are compared to state-of-the-art QCD predictions, which combine in the best cases approximate N$$^4$$ 4 LL resummation with N$$^3$$ 3 LO fixed-order perturbative calculations. The differential rapidity distributions integrated over $$p_{\text {T}}$$ p T are even more precise, with accuracies from 0.2–0.3% for $$|y| < 2.0$$ | y | < 2.0 to 0.4–0.9% at higher rapidities, and are compared to fixed-order QCD predictions using the most recent parton distribution functions. The agreement between data and predictions is quite good in most cases.

First Measurement of Discrimination between Helium and Electron Recoils in Liquid Xenon for Low-Mass Dark Matter Searches

(2024)

We report the first measurement of discrimination between low-energy helium recoils and electron recoils in liquid xenon. This result is relevant to proposed low-mass dark matter searches which seek to dissolve light target nuclei in the active volume of liquid-xenon time projection chambers. Low-energy helium recoils were produced by degrading α particles from ^{210}Po with a gold foil situated on the cathode of a liquid xenon time-projection chamber. The resulting population of helium recoil events is well separated from electron recoils and is also offset from the expected position of xenon nuclear recoil events.

Measurement of the Centrality Dependence of the Dijet Yield in p+Pb Collisions at sNN=8.16 TeV with the ATLAS Detector

(2024)

ATLAS measured the centrality dependence of the dijet yield using 165  nb^{-1} of p+Pb data collected at sqrt[s_{NN}]=8.16  TeV in 2016. The event centrality, which reflects the p+Pb impact parameter, is characterized by the total transverse energy registered in the Pb-going side of the forward calorimeter. The central-to-peripheral ratio of the scaled dijet yields, R_{CP}, is evaluated, and the results are presented as a function of variables that reflect the kinematics of the initial hard parton scattering process. The R_{CP} shows a scaling with the Bjorken x of the parton originating from the proton, x_{p}, while no such trend is observed as a function of x_{Pb}. This analysis provides unique input to understanding the role of small proton spatial configurations in p+Pb collisions by covering parton momentum fractions from the valence region down to x_{p}∼10^{-3} and x_{Pb}∼4×10^{-4}.

Search for the decay of the Higgs boson to a Z boson and a light pseudoscalar particle decaying to two photons

(2024)

A search for the decay of the Higgs boson to a Z boson and a light, pseudoscalar particle, a, decaying respectively to two leptons and to two photons is reported. The search uses the full LHC Run 2 proton–proton collision data at s=13 TeV, corresponding to 139 fb−1 collected by the ATLAS detector. This is one of the first searches for this specific decay mode of the Higgs boson, and it probes unexplored parameter space in models with axion-like particles (ALPs) and extended scalar sectors. The mass of the a particle is assumed to be in the range 0.1–33 GeV. The data are analysed in two categories: a merged category where the photons from the a decay are reconstructed in the ATLAS calorimeter as a single cluster, and a resolved category in which two separate photons are detected. The main background processes are from Standard Model Z boson production in association with photons or jets. The data are in agreement with the background predictions, and upper limits on the branching ratio of the Higgs boson decay to Za times the branching ratio a→γγ are derived at the 95% confidence level and they range from 0.08% to 2% depending on the mass of the a particle. The results are also interpreted in the context of ALP models.

Cover page of Dark matter in a mirror solution to the strong CP problem

Dark matter in a mirror solution to the strong CP problem

(2024)

We study thermal production of dark matter (DM) in a realization of the minimal models of Bonnefoy et al. [Phys. Rev. Lett. 131, 221802 (2023)PRLTAO0031-900710.1103/PhysRevLett.131.221802], where parity is used to solve the strong CP problem by transforming the entire Standard Model (SM) into a mirror copy. Although the mirror electron e′ is a good DM candidate, its viability is mired by the presence of the mirror up quark u′, whose abundance is intimately related to the e′ abundance and must be suppressed. This can be achieved through a sequential freeze-in mechanism, where mirror photons are first produced from SM gluons, and then the mirror photons produce e′. After computing the details of this double freeze-in, we discuss the allowed parameter space of the model, which lies at the threshold of experimental observations. We find that this origin of e′ DM requires a low reheating temperature after inflation and is consistent with the baryon asymmetry arising from leptogenesis, providing mirror neutrinos have a significant degeneracy. Finally, we show that this e′ DM is not compatible with Higgs parity, the simplest scheme with exact parity, unless SM parameters deviate significantly from their central values or the minimal model is extended.

Study of Z→llγ decays at s = 8 TeV with the ATLAS detector

(2024)

Abstract: This paper presents a study of $$Z \rightarrow ll\gamma $$ Z → l l γ  decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton–proton data sample corresponding to an integrated luminosity of 20.2 fb$$^{-1}$$ - 1 collected at a centre-of-mass energy $$\sqrt{s}$$ s = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with state-of-the-art predictions for final-state QED radiation. First measurements of $$Z \rightarrow ll\gamma \gamma $$ Z → l l γ γ  decays are also reported.

Search for New Phenomena in Two-Body Invariant Mass Distributions Using Unsupervised Machine Learning for Anomaly Detection at s=13 TeV with the ATLAS Detector

(2024)

Searches for new resonances are performed using an unsupervised anomaly-detection technique. Events with at least one electron or muon are selected from 140  fb^{-1} of pp collisions at sqrt[s]=13  TeV recorded by ATLAS at the Large Hadron Collider. The approach involves training an autoencoder on data, and subsequently defining anomalous regions based on the reconstruction loss of the decoder. Studies focus on nine invariant mass spectra that contain pairs of objects consisting of one light jet or b jet and either one lepton (e,μ), photon, or second light jet or b jet in the anomalous regions. No significant deviations from the background hypotheses are observed. Limits on contributions from generic Gaussian signals with various widths of the resonance mass are obtained for nine invariant masses in the anomalous regions.