Skip to main content
eScholarship
Open Access Publications from the University of California

Software Performance of the ATLAS Track Reconstruction for LHC Run 3

(2024)

Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pile-up) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two.

Cover page of Deep Generative Models for Fast Photon Shower Simulation in ATLAS

Deep Generative Models for Fast Photon Shower Simulation in ATLAS

(2024)

The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques.

Probing the scalar WIMP-pion coupling with the first LUX-ZEPLIN data

(2024)

Weakly interacting massive particles (WIMPs) may interact with a virtual pion that is exchanged between nucleons. This interaction channel is important to consider in models where the spin-independent isoscalar channel is suppressed. Using data from the first science run of the LUX-ZEPLIN dark matter experiment, containing 60 live days of data in a 5.5 tonne fiducial mass of liquid xenon, we report the results on a search for WIMP-pion interactions. We observe no significant excess and set an upper limit of 1.5 × 10−46 cm2 at a 90% confidence level for a WIMP mass of 33 GeV/c2 for this interaction.

The data acquisition system of the LZ dark matter detector: FADR

(2024)

The Data Acquisition System (DAQ) for the LUX-ZEPLIN (LZ) dark matter detector is described. The signals from 745 PMTs, distributed across three subsystems, are sampled with 100-MHz 32-channel digitizers (DDC-32s). A basic waveform analysis is carried out on the on-board Field Programmable Gate Arrays (FPGAs) to extract information about the observed scintillation and electroluminescence signals. This information is used to determine if the digitized waveforms should be preserved for offline analysis. The system is designed around the Kintex-7 FPGA. In addition to digitizing the PMT signals and providing basic event selection in real time, the flexibility provided by the use of FPGAs allows us to monitor the performance of the detector and the DAQ in parallel to normal data acquisition. The hardware and software/firmware of this FPGA-based Architecture for Data acquisition and Realtime monitoring (FADR) are discussed and performance measurements are described.

Combination of Searches for Higgs Boson Pair Production in pp Collisions at s=13 TeV with the ATLAS Detector

(2024)

This Letter presents results from a combination of searches for Higgs boson pair production using 126-140  fb^{-1} of proton-proton collision data at sqrt[s]=13  TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.4 assuming no Higgs boson pair production. Constraints on the Higgs boson self-coupling modifier κ_{λ}=λ_{HHH}/λ_{HHH}^{SM}, and the quartic HHVV coupling modifier κ_{2V}=g_{HHVV}/g_{HHVV}^{SM}, are derived individually, fixing the other parameter to its SM value. The observed 95% CL intervals are -1.2<κ_{λ}<7.2 and 0.6<κ_{2V}<1.5, respectively, while the expected intervals are -1.6<κ_{λ}<7.2 and 0.4<κ_{2V}<1.6 in the SM case. Constraints obtained for several interaction parameters within Higgs effective field theory are the strongest to date, offering insights into potential deviations from SM predictions.

Studies of the Energy Dependence of Diboson Polarization Fractions and the Radiation-Amplitude-Zero Effect in WZ Production with the ATLAS Detector

(2024)

This Letter presents the first study of the energy dependence of diboson polarization fractions in WZ→ℓνℓ′ℓ′(ℓ,ℓ′=e,μ) production. The dataset used corresponds to an integrated luminosity of 140  fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events featuring two longitudinally polarized bosons are defined. A nonzero fraction of events with two longitudinally polarized bosons is measured with an observed significance of 5.3 standard deviations in the region with 100200  GeV, where pTZ is the transverse momentum of the Z boson. This Letter also reports the first study of the radiation-amplitude-zero effect. Events with two transversely polarized bosons are analyzed for the ΔY(ℓWZ) and ΔY(WZ) distributions defined respectively as the rapidity difference between the lepton from the W boson decay and the Z boson and the rapidity difference between the W boson and the Z boson. Significant suppression of events near zero is observed in both distributions. Unfolded ΔY(ℓWZ) and ΔY(WZ) distributions are also measured and compared to theoretical predictions. © 2024 CERN, for the ATLAS Collaboration 2024 CERN

Search for heavy Majorana neutrinos in e ± e ± and e ± μ ± final states via WW scattering in pp collisions at s = 13 TeV with the ATLAS detector

(2024)

A search for heavy Majorana neutrinos in scattering of same-sign W boson pairs in proton–proton collisions at s=13 TeV at the LHC is reported. The dataset used corresponds to an integrated luminosity of 140 fb−1, collected with the ATLAS detector during 2015–2018. The search is performed in final states including a same-sign ee or eμ pair and at least two jets with large invariant mass and a large rapidity difference. No significant excess of events with respect to the Standard Model background predictions is observed. The results are interpreted in a benchmark scenario of the Phenomenological Type-I Seesaw model. New constraints are set on the values of the |VeN|2 and |VeNVμN⁎| parameters for heavy Majorana neutrino masses between 50 GeV and 20 TeV, where VℓN is the matrix element describing the mixing of the heavy Majorana neutrino mass eigenstate with the Standard Model neutrino of flavour ℓ=e,μ. The sensitivity to the Weinberg operator is investigated and constraints on the effective ee and eμ Majorana neutrino masses are reported. The statistical combination of the ee and eμ channels with the previously published μμ channel is performed.

Cover page of Archetype-based Redshift Estimation for the Dark Energy Spectroscopic Instrument Survey

Archetype-based Redshift Estimation for the Dark Energy Spectroscopic Instrument Survey

(2024)

We present a computationally efficient galaxy archetype-based redshift estimation and spectral classification method for the Dark Energy Survey Instrument (DESI) survey. The DESI survey currently relies on a redshift fitter and spectral classifier using a linear combination of principal component analysis-derived templates, which is very efficient in processing large volumes of DESI spectra within a short time frame. However, this method occasionally yields unphysical model fits for galaxies and fails to adequately absorb calibration errors that may still be occasionally visible in the reduced spectra. Our proposed approach improves upon this existing method by refitting the spectra with carefully generated physical galaxy archetypes combined with additional terms designed to absorb data reduction defects and provide more physical models to the DESI spectra. We test our method on an extensive data set derived from the survey validation (SV) and Year 1 (Y1) data of DESI. Our findings indicate that the new method delivers marginally better redshift success for SV tiles while reducing catastrophic redshift failure by 10%-30%. At the same time, results from millions of targets from the main survey show that our model has relatively higher redshift success and purity rates (0.5%-0.8% higher) for galaxy targets while having similar success for QSOs. These improvements also demonstrate that the main DESI redshift pipeline is generally robust. Additionally, it reduces the false-positive redshift estimation by 5%−40% for sky fibers. We also discuss the generic nature of our method and how it can be extended to other large spectroscopic surveys, along with possible future improvements.

Search for pair production of boosted Higgs bosons via vector-boson fusion in the b b ¯ b b ¯ final state using pp collisions at s = 13 TeV with the ATLAS detector