Skip to main content
eScholarship
Open Access Publications from the University of California

The investigations that led to the founding of Scripps Institution of Oceanography (SIO) began as summer marine biological studies conducted by UC Professor William E. Ritter beginning in 1892. In 1903, Ritter and a group of San Diegans established SIO. The scientific scope of SIO's research has grown to encompass physical, chemical, geological, and geophysical studies of the oceans, earth and atmosphere as well as biological research.

Cover page of On the Natural Geography of North San Diego County

On the Natural Geography of North San Diego County

(2013)

As a consequence of the prevailing geographic diversity, the county has an extraordinary variety of plants and animals. It is an internationally recognized "biodiversity hot spot" and has very few equals in that regard, in all of North America or elsewhere on our planet.

Cover page of On “CHAPARRAL” versus “COASTAL SAGE SCRUB” in San Diego County

On “CHAPARRAL” versus “COASTAL SAGE SCRUB” in San Diego County

(2013)

The County of San Diego has both "Coastal Sage Scrub" and "Chaparral" in abundance. In fact, these two ecosystems cover most of the ground in the county, albeit with many different types. Many of the plants involved in the two systems are deceptively similar, although they quite commonly belong to different species. Naturally, one would like to know how to keep the two communities apart. The criteria, evidently, are plant species distributions. These have been and are being mapped by various methods, including field work by expert observers, collections of specimens in museum repositories, and the study of air photos and satellite images.

Cover page of Hans E. Suess (1909-1993): Radiocarbon, Sun and Climate Pioneer

Hans E. Suess (1909-1993): Radiocarbon, Sun and Climate Pioneer

(2012)

Hans Suess was interested in the question of how the sun’s activity changes through time, and whether the variations in activity can be recognized in climate proxy records.

Cover page of Stable Isotope Protocols: Sampling and Sample Processing

Stable Isotope Protocols: Sampling and Sample Processing

(2012)

These protocols are designed to provide the information needed by researchers or managers to conduct natural abundance stable isotopic analyses of marsh food sources (suspended particulate organic matter [SPOM], vascular plants, benthic microalgae[BMI], benthic macroalgae) and sediments, as well as common invertebrate and vertebrate consumers (snails, mussels, crabs, macroinfauna and fish). A list of supplies required to carry out the protocols is given in Table A-1.

Cover page of SPOTL: Some Programs for Ocean-Tide Loading

SPOTL: Some Programs for Ocean-Tide Loading

(2012)

The increasing precision of geodetic measurements has made the effects of loading by ocean tides(or other sources) important to a wider range of researchers than just the earth-tide community.Computing such loading effects has, however, remained a rather specialized activity. This collectionof programs aims to make it easy to compute load tides, or, with slight modifications, the effects ofother loads.Given that the most accurate representations of the ocean tides require both global and regionalmodels, my aim has also been to make it easy to combine different tidal models, and to use differentEarth models (though the method is restricted to spherically symmetric ones). Especially for theglobal ocean tide there are many models available; this package provides a set of current modelsfound using different methods.The package also includes programs to allow the computed loads (or the ocean tide) to be convertedinto harmonic constants, and to compute the tide in the time domain from these constants. Forcompleteness a program for direct computation of the body tides is included; while its accuracy isnot as high as that of some others (for example Merriam (1992)), it should be more than adequatefor representing any but (perhaps) gravity-tide measurements with low-noise instruments.This package can actually be used to find the surface effects of any load, so long as these effects arefrom elastic deformation, which is appropriate for any load with a time constant shorter than years:for example, changing reservoir water levels, seasonal groundwater changes, and non-tidal oceanloading.

Cover page of Miklankovitch Theory - Hits and Misses

Miklankovitch Theory - Hits and Misses

(2012)

Milankovitch Theory has become an important tool in geologic practice andthought, and is sufficiently conspicuous to provide a rewarding target for criticism.The chief problem arising has to do with the prominence of a cycle near 100,000years, whose origin is not clear. Most practitioners, presumably, would accept aclose relationship of that cycle to precession of the equinoxes (that is, cyclicchanges in seasonality), along with dynamical properties of the system thatenhance the amplitude of the 100-kyr cycle at the expense of others. In anycase, Milankovitch Theory has proved useful, both for age assignments and forstimulating thought about relationships between climate change andsedimentation, as is readily evident from the relevant literature. It would bedifficult to replace. Neither does it seem desirable to do so: the chief problemnoted in regard of the theory (the 100-kyr problem) is not necessarily a part of thetheory, which is concerned with change rather than with condition. The 100-kyrcycle is linked to condition. The problem raised by critics seems to be the timescale of integration of change, a problem not addressed in Milankovitch Theory.A necessity for additional processes and mechanisms not considered inMilankovitch Theory cannot be excluded.

Cover page of References Cited in “Ocean, Reflections on a Century of Exploration” (University of California Press, 2009)

References Cited in “Ocean, Reflections on a Century of Exploration” (University of California Press, 2009)

(2011)

In the following are listed the various references used in a treatise on ocean exploration, recently published by the University of California Press (Berger, W.H., 2009. Ocean – Reflections on a Century of Exploration. UC Press, Berkeley 519pp.; with contributions by E.N. Shor). The list is alphabetical (unlike in the volume) and is suited for electronic searching and for downloading. The references were assembled to reflect ocean research in the 20th century. There is some bias toward marine geology and ecology, and toward work in these fields at the U.S. West Coast. Also, there is some emphasis on research at Scripps Institution of Oceanography (which celebrated the centennial of its founding in 2003). Historical aspects owe much to numerous contributions by E.N. Shor. For topics that were not represented in my collection of reprints and books, I used various symposia and encyclopedias. One that proved especially useful is the 6-volume encyclopedia on the ocean edited by Steele et al. (2001). Some relevant references only list the name of the contributor and the treatise. A few references are incomplete in the original book and have been completed for the present list. The total number of references is 889.

Cover page of On the Geochemistry of Venice Lagoon Sediments. Scripps Institution of Oceanography SEDiment Research Program – SIOSED. A Background Report

On the Geochemistry of Venice Lagoon Sediments. Scripps Institution of Oceanography SEDiment Research Program – SIOSED. A Background Report

(2011)

In order to understand the biogeochemical processes of involved in the relocation of dredged channel sediments in the Venice Lagoon, Italy, the SIOSED (Scripps Institution of Oceanography SEDiment research group) has carried out a research program from March 2005 to November 2007. Sediments were cored at various locations in the Venice Lagoon. In addition sediments were dredged from a navigation channel and transplanted directly into banks at two shallow sites. The monitoring program was essential since sediment in the Venice Lagoon is often contaminated with various metals and organic pollutants in different concentrations; consequently, most of the sediment in the lagoon has been evaluated as potentially hazardous. The sediment classification of the lagoon is organized into three categories based on the concentration range of various contaminants. Concentrations of the categories are based on total concentration values and on potential toxicity of each single contaminant; therefore, the occurrence of only one contaminant above the range characteristic of a specific category associates the sediment to the next more contaminated category. As part of this multi-disciplinary program, potential changes in the geochemistry of sediments were studied in relation to their dredging and reuse, including both the chemistry of solid phases and of interstitial fluids of the sediments. The present program of studies has emphasized the study of both major elements and trace metals in the sediments. Results of SIOSED sponsored studies on the distribution of Hg and the processes involving the generation of pollutants such as methyl-mercury have been already been published

Cover page of Geochemistry of Sedimentary Pore Fluids in Venice Lagoon, Results of the SIOSED Program from 2005-2007, A Background Report

Geochemistry of Sedimentary Pore Fluids in Venice Lagoon, Results of the SIOSED Program from 2005-2007, A Background Report

(2011)

As part of the SIOSED (Scripps Institution of Oceanography SEDiment research group) we have made an investigation of the geochemistry of interstitial waters of sediments recovered in this program. SIOSED studies were carried out from March 2005 to November 2007 at various times of the year. Our studies of interstitial waters were initiated in May 2005 and carried out through February 2007. At first we studied interstitial waters recovered from piston cores of variable lengths (1.1 m to 1.5 m), but later we emphasized also the studies of 20 - 25 cm long tube cores, especially in areas where new sediment banks were constructed from materials of a dredged canal. In this report we present the data obtained under the auspices of program, intended as a back ground for already published information as well as for future papers on the geochemistry of Venice Lagoon sediments obtained under SIOSED.

Cover page of Common benthic algae and cyanobacteria in southern California tidal wetlands

Common benthic algae and cyanobacteria in southern California tidal wetlands

(2011)

Benthic algae and photosynthetic bacteria are important components of coastal wetlands, contributing to primary productivity, nutrient cycling, and other ecosystem functions. Despite their key roles in mudflat and salt marsh food webs, the extent and patterns of diversity of these organisms is poorly known. Sediments from intertidal marshes in San Diego County, California host a variety of cyanobacteria, diatoms, and multi-cellular algae. This flora describes approximately 40 taxa of common and notable cyanobacteria, microalgae and macroalgae observed in wetland sediments, principally from a small tidal marsh in Mission Bay. Cyanobacteria included coccoid and heterocyte and non-heterocyte bearing filamentous genera. A phylogenetically-diverse assemblage of pennate and centric diatoms, euglenoids, green algae, red algae, tribophytes and brown seaweeds was also observed. Most taxa are illustrated with photographs.