Skip to main content
eScholarship
Open Access Publications from the University of California

Mechanical Engineering - Open Access Policy Deposits

This series is automatically populated with publications deposited by UC Berkeley Department of Mechanical Engineering researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Cover page of Reimagining Autonomous Underwater Vehicle Charging Stations with Wave Energy

Reimagining Autonomous Underwater Vehicle Charging Stations with Wave Energy

(2021)

The vast capabilities of autonomous underwater vehicles (AUVs)—such as in assisting scientific research, conducting military tasks, and repairing oil pipelines—are limited by high operating costs and the relative inaccessibility of power in the open ocean. Wave powered AUV charging stations may address these issues. With projected increases in usage of AUVs globally in the next five years, AUV charging stations can enable less expensive and longer AUV missions. This paper summarizes the design process and investigates the feasibility of a wave powered, mobile AUV charging station, including the choice of a wave energy converter and AUV docking station as well as the ability to integrate the charging station with an autonomous surface vehicle. The charging station proposed in this paper meets many different commercial, scientific, and defense needs, including continuous power availability, data transmission capabilities, and mobility. It will be positioned as a hub for AUV operations, enabling missions to run autonomously with no support ship. The potential market for this design is very promising, with an estimated $1.64 million market size just for AUV technologies by 2025.

  • 1 supplemental PDF

Flow topology changes with bubbly flow around a circular cylinder

(2024)

Vortex induced vibration (VIV) experienced during flow past a cylinder can reduce equipment performance and in some cases lead to failure. Previous studies have shown that the injection of bubbles in the flow over a cylinder typically leads to a monotonic increase in shedding frequency with void fraction, however, a satisfactory explanation for this phenomenon has not been proposed. Unexplained scatter in the data exists, including that the increase in shedding frequency is not universal. More research is needed to characterize the influence of bubbles on the wake structure, and subsequent shift in shedding frequency. To this aim, the effect of bubbles on the structure of the wake and VIV was examined over two values of Reynolds number, ReD=100,000 and 160,000. Time-resolved particle image velocimetry (TR-PIV), proper orthogonal decomposition (POD) and spectral proper orthogonal decomposition (SPOD) of the wake structures, vibration of the cylinder, and bubble image velocimetry (BIV) were used to assess the flow topology changes under the influence of gas injection. Using SPOD/POD analysis in the near wake, it was found that the primary Karman shedding frequency decreased with the injection of gas, from a Strouhal number of St = 0.2 to St = 0.17−0.18; the width of the spectral peak was found to increase with void fraction. Notably, the vibration of the cylinder at the primary Karman shedding frequency was suppressed following the injection of gas, even at spanwise-averaged volumetric qualities below 0.01%. This suppression occurred regardless of if gas was concentrated locally near the centerline of the channel, or along the span. BIV data suggests that gas accumulation in the near wake, driven by the high velocity vertical motion of gas, serves to uncouple the cylinder motion from the formation of the vortex street downstream while promoting faster wake recovery.

Cover page of Moisture self-regulating ionic skins with ultra-long ambient stability for self-healing energy and sensing systems

Moisture self-regulating ionic skins with ultra-long ambient stability for self-healing energy and sensing systems

(2024)

Dehydration has been a key limiting factor for the operation of conductive hydrogels in practical application. Here, we report self-healable ionic skins that can self-regulate their internal moisture level by capturing extenral moistures via hygroscopic ion-coordinated polymer backbones through antipolyelectrolyte effect. Results show the ionic skin can maintain its mechanical and electrical functions over 16 months in the ambient environment with high stretchability (fracture stretch ∼2216 %) and conductivity (23.5 mS/cm). The moisture self-regulating capability is further demonstrated by repeated exposures to harsh environments such as 200°C heating, freezing, and vacuum drying with recovered conductivity and stretchability. Their reversible ionic and hydrogen bonds also enable self-healing feature as a sample with the fully cut-through damage can restore its conductivity after 24 h at 40 % relative humidity. Utilizing the ionic skin as a building block, self-healing flexible piezoelecret sensors have been constructed to monitor physiological signals. Together with a facile transfer-printing process, a self-powered sensing system with a self-healable supercapacitor and humidity sensor has been successfully demonstrated. These results illustrate broad-ranging possibilities for the ionic skins in applications such as energy storage, wearable sensors, and human-machine interfaces.

Experimental observation of cavity-free ice-free isochoric vitrification via combined pressure measurements and photon counting x-ray computed tomography

(2024)

Isochoric (constant-volume or volumetrically confined) vitrification has shown potential as an alternative cryopreservation-by-vitrification technique, but the complex processes at play within the chamber are yet poorly characterized, and recent investigations have prompted significant debate around whether a truly isochoric vitrification process (in which the liquid remains completely confined by solid boundaries) is indeed feasible. Based on a recent thermomechanical simulation of a high-concentration Me2SO solution, Solanki and Rabin (Cryobiology, 2023, 111, 9-15.) argue that isochoric vitrification is not feasible, because differential thermal contraction of the solution and container will necessarily drive generation of a cavity, corrupting the rigid confinement of the liquid. Here, we provide direct experimental evidence to the contrary, demonstrating cavity-free isochoric vitrification of a ∼3.5 M vitrification solution by combined isochoric pressure measurement (IPM) and photon-counting x-ray computed tomography (PC-CT). We hypothesize that the absence of a cavity is due to the minimal thermal contraction of the solution, which we support with additional volumetric analysis of the PC-CT reconstructions. In total, this study provides experimental evidence both demonstrating the feasibility of isochoric vitrification and highlighting the potential of designing vitrification solutions that exhibit minimal thermal contraction.

Cover page of Isolation and characterization of a Halomonas species for non-axenic growth-associated production of bio-polyesters from sustainable feedstocks.

Isolation and characterization of a Halomonas species for non-axenic growth-associated production of bio-polyesters from sustainable feedstocks.

(2024)

UNLABELLED: Biodegradable plastics are urgently needed to replace petroleum-derived polymeric materials and prevent their accumulation in the environment. To this end, we isolated and characterized a halophilic and alkaliphilic bacterium from the Great Salt Lake in Utah. The isolate was identified as a Halomonas species and designated CUBES01. Full-genome sequencing and genomic reconstruction revealed the unique genetic traits and metabolic capabilities of the strain, including the common polyhydroxyalkanoate (PHA) biosynthesis pathway. Fluorescence staining identified intracellular polyester granules that accumulated predominantly during the strains exponential growth, a feature rarely found among natural PHA producers. CUBES01 was found to metabolize a range of renewable carbon feedstocks, including glucosamine and acetyl-glucosamine, as well as sucrose, glucose, fructose, and further glycerol, propionate, and acetate. Depending on the substrate, the strain accumulated up to ~60% of its biomass (dry wt/wt) in poly(3-hydroxybutyrate), while reaching a doubling time of 1.7 h at 30°C and an optimum osmolarity of 1 M sodium chloride and a pH of 8.8. The physiological preferences of the strain may not only enable long-term aseptic cultivation but also facilitate the release of intracellular products through osmolysis. The development of a minimal medium also allowed the estimation of maximum polyhydroxybutyrate production rates, which were projected to exceed 5 g/h. Finally, also, the genetic tractability of the strain was assessed in conjugation experiments: two orthogonal plasmid vectors were stable in the heterologous host, thereby opening the possibility of genetic engineering through the introduction of foreign genes. IMPORTANCE: The urgent need for renewable replacements for synthetic materials may be addressed through microbial biotechnology. To simplify the large-scale implementation of such bio-processes, robust cell factories that can utilize sustainable and widely available feedstocks are pivotal. To this end, non-axenic growth-associated production could reduce operational costs and enhance biomass productivity, thereby improving commercial competitiveness. Another major cost factor is downstream processing, especially in the case of intracellular products, such as bio-polyesters. Simplified cell-lysis strategies could also further improve economic viability.

Cover page of Feasibility of using diamond-like carbon films in total joint replacements: a review.

Feasibility of using diamond-like carbon films in total joint replacements: a review.

(2024)

Diamond-like Carbon (DLC) has been used as a coating material of choice for a variety of technological applications owing to its favorable bio-tribo-thermo-mechanical characteristics. Here, the possibility of bringing DLC into orthopedic joint implants is examined. With ever increasing number of patients suffering from osteoarthritis as well as with the ingress of the osteoarthritic joints malaise into younger and more active demographics, there is a pressing need to augment the performance and integrity of conventional total joint replacements (TJRs). Contemporary joint replacement devices use metal-on-polymer articulations to restore function to worn, damaged or diseased cartilage. The wear of polymeric components has been addressed using crosslinking and antioxidants; however, in the context of the metallic components, complications pertaining to corrosion and metal ion release inside the body still persist. Through this review article, we explore the use of DLC coatings on metallic bearing surfaces and elucidate why this technology might be a viable solution for ongoing electrochemical challenges in orthopedics. The different characteristics of DLC coatings and their feasibility in TJRs are examined through assessment of tribo-material characterization methods. A holistic characterization of the coating-substrate interface and the wear performance of such systems are discussed. As with all biomaterials used in TJRs, we need mindful consideration of potential in-vivo challenges. We present a few caveats for DLC coatings including delamination, hydrophobicity, and other conflicting as well as outdating findings in the literature. We recommend prudently exploring DLC films as potential coatings on metallic TJR components to solve the problems pertaining to wear, metal ion release, and corrosion. Ultimately, we advise bringing DLC into clinical use only after addressing all challenges and concerns outlined in this article.

Cover page of Deep learning enables accurate soft tissue tendon deformation estimation in vivo via ultrasound imaging.

Deep learning enables accurate soft tissue tendon deformation estimation in vivo via ultrasound imaging.

(2024)

Image-based deformation estimation is an important tool used in a variety of engineering problems, including crack propagation, fracture, and fatigue failure. These tools have been important in biomechanics research where measuring in vitro and in vivo tissue deformations are important for evaluating tissue health and disease progression. However, accurately measuring tissue deformation in vivo is particularly challenging due to limited image signal-to-noise ratio. Therefore, we created a novel deep-learning approach for measuring deformation from a sequence of images collected in vivo called StrainNet. Utilizing a training dataset that incorporates image artifacts, StrainNet was designed to maximize performance in challenging, in vivo settings. Artificially generated image sequences of human flexor tendons undergoing known deformations were used to compare benchmark StrainNet against two conventional image-based strain measurement techniques. StrainNet outperformed the traditional techniques by nearly 90%. High-frequency ultrasound imaging was then used to acquire images of the flexor tendons engaged during contraction. Only StrainNet was able to track tissue deformations under the in vivo test conditions. Findings revealed strong correlations between tendon deformation and applied forces, highlighting the potential for StrainNet to be a valuable tool for assessing rehabilitation strategies or disease progression. Additionally, by using real-world data to train our model, StrainNet was able to generalize and reveal important relationships between the effort exerted by the participant and tendon mechanics. Overall, StrainNet demonstrated the effectiveness of using deep learning for image-based strain analysis in vivo.

Spatially Resolved Quantum Sensing with High-Density Bubble-Printed Nanodiamonds

(2024)

Nitrogen-vacancy (NV-) centers in nanodiamonds have emerged as a versatile platform for a wide range of applications, including bioimaging, photonics, and quantum sensing. However, the widespread adoption of nanodiamonds in practical applications has been hindered by the challenges associated with patterning them into high-resolution features with sufficient throughput. In this work, we overcome these limitations by introducing a direct laser-writing bubble printing technique that enables the precise fabrication of two-dimensional nanodiamond patterns. The printed nanodiamonds exhibit a high packing density and strong photoluminescence emission, as well as robust optically detected magnetic resonance (ODMR) signals. We further harness the spatially resolved ODMR of the nanodiamond patterns to demonstrate the mapping of two-dimensional temperature gradients using high frame rate widefield lock-in fluorescence imaging. This capability paves the way for integrating nanodiamond-based quantum sensors into practical devices and systems, opening new possibilities for applications involving high-resolution thermal imaging and biosensing.

Cover page of Nondestructive Imaging of Manufacturing Defects in Microarchitected Materials

Nondestructive Imaging of Manufacturing Defects in Microarchitected Materials

(2024)

Defects in microarchitected materials exhibit a dual nature, capable of both unlocking innovative functionalities and degrading their performance. Specifically, while intentional defects are strategically introduced to customize and enhance mechanical responses, inadvertent defects stemming from manufacturing errors can disrupt the symmetries and intricate interactions within these materials. In this study, we demonstrate a nondestructive optical imaging technique that can precisely locate defects inside microscale metamaterials, as well as provide detailed insights on the specific type of defect.

Cover page of Fast In-Hand Slip Control on Unfeatured Objects With Programmable Tactile Sensing

Fast In-Hand Slip Control on Unfeatured Objects With Programmable Tactile Sensing

(2024)

Accurate dynamic object manipulation in a robotic hand remains a difficult task, especially when frictional slip is involved. Prior solutions involve extensive data collection to train complex models to control the hand that do not necessarily generalize to other slip circumstances. Our approach focuses on direct slip sensing using a tactile sensor with a capacitive array, coupled with a programmable system on a chip, capable of mode switching and sampling rate adjustment. We characterize the sensor's capacity to sense slip features at higher speeds and introduce a novel methodology for estimating motions. Low-level sensor reprogramming that couples multiple taxels improves slip avoidance and reaction time during rapid slip onset events. The technology also tracks dominant surface vibration frequencies resulting from stick-slip cycles, estimating speed and acceleration of smooth flat surfaces. Using a parallel-jaw robotic gripper, we demonstrate dynamic repositioning of objects lacking trackable surface features within the hand. The goal of this investigation is to support faster reasoning and reflexes for dynamic dexterous robots that experience directional in-hand slip.