Skip to main content
eScholarship
Open Access Publications from the University of California

Institute of the Environment

Tahoe Research Group/Tahoe Environmental Research Center Publications bannerUC Davis

Tahoe Research Group/Tahoe Environmental Research Center Publications

The John Muir Institute of the Environment supports innovative interdisciplinary research, teaching and outreach activities which respond to problems in the environment and strengthen the scientific foundation for environmental decision making.

The John Muir Institute of the Environment champions research and service at the University of California, Davis which benefits the biological, physical and human environment. The institute provides campus-wide leadership, hosts centers and projects, and seeds research and educational initiatives to solve environmental problems. Their activities link traditional academic and administrative units by providing the intellectual setting for interaction between researchers, regulatory agencies, policy-makers and the public to find solutions to complex environmental problems.

Cover page of AN INNOVATIVE AND ELEGANTLY SIMPLE WAY TO DO SOMETHING FOR BLUEBIRDS (AND TAKE LITTLE TIME AWAY FROM TRANSPORTATION MAINTENANCE DUTIES)

AN INNOVATIVE AND ELEGANTLY SIMPLE WAY TO DO SOMETHING FOR BLUEBIRDS (AND TAKE LITTLE TIME AWAY FROM TRANSPORTATION MAINTENANCE DUTIES)

(2006)

Bluebird boxes were attached to the back of small road signs and are maintained by the maintenance sign crew with minimal time away from their primary duties. Because locations were chosen where bluebirds had already been seen, success has been 100% since the project started in 2001. In 2002, 120 bluebirds were fledged and approximately 120 tree swallows as well. So far in 2003 there have been 30 pair of nesting bluebirds. We have had more problems this year with English sparrows killing bluebird chicks. Last year two boxes suffered from raccoon predation but that has not been repeated since the sign poles were greased. Costs were for materials only, boxes were built by the winter night crews when they were not plowing.

Cover page of USE OF LOW FENCING WITH ALUMINUM FLASHING AS A BARRIER FOR TURTLES

USE OF LOW FENCING WITH ALUMINUM FLASHING AS A BARRIER FOR TURTLES

(2005)

I examined the effects of road mortality on a population of western painted turtles (Chrysemys picta belli) in west-central Montana; these turtles make up the majority of road mortalities in a section of highway that bisects the Ninepipes National Wildlife Refuge. The objective of my barrier fencing experiment was to determine whether turtles were able to breach fencing designed to direct turtles towards crossing structures and thereby keep them off the road. I constructed 45.7-cm-high turtle enclosures out of 2- by 5-cm fencing with and without 10- or 15-cm-high flashing attached at the top. Turtles were placed in the enclosures, and behavior was observed for one hour. Of 124 turtles, only four (3.2%) were able to climb to the flashing. No turtles climbed over the flashing within the time allowed. In enclosures without flashing, two (3.8%) were able to breach the fencing. The results of this experiment will help in the design of appropriate barriers to keep turtles off the road and direct them towards crossing structures.

Cover page of A PROGRAMMATIC SECTION 7 CONSULTATION TO RESTORE HABITAT CONNECTIVITY AND ACHIEVE RECOVERY FOR A FEDERALLY THREATENED SPECIES: PREBLE’S MEADOW JUMPING MOUSE

A PROGRAMMATIC SECTION 7 CONSULTATION TO RESTORE HABITAT CONNECTIVITY AND ACHIEVE RECOVERY FOR A FEDERALLY THREATENED SPECIES: PREBLE’S MEADOW JUMPING MOUSE

(2003)

The Colorado Department of Transportation (CDOT), the Federal Highway Administration (FHWA) and the U.S. Fish and Wildlife Service (USFWS) have recently completed a programmatic consultation under section 7 consultation of the Endangered Species Act (ESA). The consultation addresses all currently known transportation projects anticipated to affect Preble’s meadow jumping mouse (Zapus hudsonius preblei) in the Monument Creek watershed, El Paso County, Colorado. It establishes a mitigation process largely divorced from individual projects. Instead of compensating for impacts to habitat with conventional mitigation methods of replacing, restoring or creating habitat based on ratios, programmatic conservation commitments focus on promoting recovery of a listed species. Also, by establishing protocols for developing subsequent projects and site-specific biological assessments, the programmatic process provides a framework for developing highway projects along predictable schedules.

Cover page of STRAWBERRY ISLAND PHASE III EROSION CONTROL AND WETLAND HABITAT RESTORATION: A CASE STUDY IN THE SUCCESSFUL APPLICATION OF IN-LIEU FEE MITIGATION

STRAWBERRY ISLAND PHASE III EROSION CONTROL AND WETLAND HABITAT RESTORATION: A CASE STUDY IN THE SUCCESSFUL APPLICATION OF IN-LIEU FEE MITIGATION

(2003)

The New York State Department of Environmental Conservation (NYSDEC), together with the New York State Office of Parks, Recreation and Historic Preservation (NYSOPRHP) and New York State Department of Transportation (NYSDOT), is conducting a riverine wetland restoration project at Strawberry Island. Strawberry Island is located at the divergence of the Tonawanda and Chippawa Channels of the Niagara River, near the City of Buffalo, in western New York. The majority of the funding for the project comes from New York’s 1996 Clean Water / Clean Air Bond Act, which was approved by voters and signed by Governor George E. Pataki. Additional funding was provided by NYSDOT as an in-lieu fee solution to unavoidable impacts to freshwater wetlands. The island, which was once more than 200 acres in size, has been severely impacted by sand and gravel mining as well as natural erosive forces. By 1993 the island had been reduced to less than six acres. Critical water levels, existing bottom topography, weather-related impacts, and recreational and commercial boating along with utilization by fish and wildlife all need to be considered. This paper describes the island history, design, regulatory approval process and construction activities utilized to protect /restore this ecologically sensitive site. Construction was completed in November 2001. Preliminary results suggest that erosion to the island has been halted and a flourishing wetland community is developing. Strawberry Island is located at the divergence of the Tonawanda and Chippawa Channels of the Niagara River near Buffalo, New York. The island was first surveyed in 1814 and found to be approximately 100 acres in size. By 1912, the island had grown to over 200 acres, when dredged materials from the construction of the Erie Canal and Black Rock Lock were placed on the site. From 1926 until 1953, the island was mined for sand and gravel to construct roads and other infrastructure for the growing City of Buffalo. By the time the mining ceased, barely twenty-five acres of the original island remained. Archived maps and aerial photography suggest that portions of the island were once productive riverine wetlands. Since that time, erosion from high-water storm events, ice scour and boat traffic have reduced the island to approximately six acres (Leuchner 1998). In the spring of 1997 both Phase I and II were completed. An aquatic habitat restoration project was completed with funding from the New York State 1996 Clean Water/Clean Air Bond Act. Rip-rap breakwaters were constructed, and wetland soil was transported from a nearby freshwater wetland. Additional wetland plants were established to supplement natural revegetation of the wetland areas, totaling three acres. The goal of the Phase III project was to protect Strawberry Island from further erosion, and restore a small portion of wetlands that were once more abundant in the river corridor.

Cover page of VERMONT AGENCY OF TRANSPORTATION WILDLIFE CROSSING TEAM; BUILDING AN INTER-AGENCY PLANNING TOOL TO ADDRESS ECOLOGICAL CONNECTIVITY IN VERMONT

VERMONT AGENCY OF TRANSPORTATION WILDLIFE CROSSING TEAM; BUILDING AN INTER-AGENCY PLANNING TOOL TO ADDRESS ECOLOGICAL CONNECTIVITY IN VERMONT

(2003)

Wildlife movement and related road crossing strategies are becoming an increasingly important factor in the development of transportation projects in Vermont – whether these projects involve reconstruction on existing alignment or new construction. The Vermont Agency of Transportation (VTrans) and the Vermont Department of Fish and Wildlife (VDFW) have identified wildlife movement and habitat connectivity as important factors to consider in the transportation project development process from three perspectives: human safety, environmental stewardship, and fiscal responsibility. Moreover, we have begun to construct wildlife crossing structures, in collaboration with VDFW, in some recent transportation projects. Unfortunately, there is a lack of wildlife road crossing data to support the inclusion, location, design, and construction of these crossings in many parts of the state. Currently, much of the information that is used in the design and location of wildlife crossing structures is from an existing database of road crossing and road mortality information for white-tailed deer, moose and black bear that is maintained by the VDFW. To assist in making, and implementing, these sometimes very expensive project decisions, VTrans desires to have a resource review team to gather wildlife movement, habitat and road mortality data relevant to specific projects. VTrans, in collaboration with VDFW, Keeping Track, Inc., and Jim Andrews of Middlebury College, has developed an inter-agency Wildlife Crossing Team. The primary objective of this initiative is to develop a data gathering protocol to assess habitat fragmented or otherwise affected by Vermont roads, and to train a group of VTrans staff to utilize that protocol as a project planning tool. The goal of this effort is to gather sufficient data regarding wildlife movement and habitat conditions, in the early stages of the transportation project development process, to make substantive recommendations, in conjunction with VDFW, to project managers and designers so that wildlife movement and ecological connectivity can be considered in the design and construction of appropriate VTrans projects. Through this process wildlife movement and habitat connectivity can become an integral part of the environmental review process at VTrans – similar to how historic, archaeological, and other natural resources are considered. It is hoped that this effort will take wildlife movement and habitat connectivity beyond an issue of compliance and become a more standard consideration for transportation projects in Vermont where appropriate. This paper will discuss the development of this inter-agency wildlife crossing team.

Cover page of DRAFT GUIDELINES FOR DEVELOPMENT OF CONSERVATION ALTERNATIVE MOWING PLANS FOR INTERSTATE, EXPRESSWAY AND PARKWAY ROADSIDES

DRAFT GUIDELINES FOR DEVELOPMENT OF CONSERVATION ALTERNATIVE MOWING PLANS FOR INTERSTATE, EXPRESSWAY AND PARKWAY ROADSIDES

(2003)

A primary responsibility of the New York State Department of Transportation (NYSDOT) is to maintain a highway right of way that is safe for the traveling public. Most often, this requires removal of trees, shrubs, and other fixed objects that may stand in the way of drivers leaving the highway. For many years, the department has fulfilled this responsibility by large scale clearing and mowing of a clear zone. Roadside management practices that maintain the right of way as parkland certainly make the road safe and visually pleasing, but provide little in the way of useful habitat for wildlife. The clear zone, occupying approximately 1 percent of the state’s land area, is a landscape that has much potential for providing nesting and foraging habitat for grassland bird species. Protection of the environment being another responsibility of the department, the NYSDOT needs to advance practices that promote wildlife use of habitats along the highway, while maintaining a safe and aesthetic roadside for the travelers.

Cover page of EFFECTS OF SOIL DISTURBANCE FROM ROADWORKS ON ROADSIDE SHRUB POPULATIONS IN SOUTH-EASTERN AUSTRALIA

EFFECTS OF SOIL DISTURBANCE FROM ROADWORKS ON ROADSIDE SHRUB POPULATIONS IN SOUTH-EASTERN AUSTRALIA

(2003)

In many fragmented agricultural regions of south-eastern Australia, roadside vegetation provides important refuges for threatened native fauna and isolated populations of plant species. However, as roads are transport corridors for humans and their vehicles, species survival is affected through destruction and modification of remaining habitat by human activity. The effects of soil disturbance from roadworks on the structural dynamics and spatial patterning of roadside Acacia populations was investigated in the Lockhart Shire study area, NSW, Australia. Classification and ordination of size structures of Acacia pycnantha, A. montana and A. decora showed distinct groups of colonising, stable and senescent populations. Soil disturbance from previous roadworks was recorded in 88 percent of populations, and there was a significant relationship between major recruitment pulses and roadworks events in Acacia populations. Spatial pattern analysis using the Network K-function showed significant clustering of older senescent populations, and Discriminant Function Analyses revealed that road verge width, road category, disturbance intensity, and distance to nearest town were highly significant variables in relation to disturbance regimes from roadworks activities. These results have highlighted the importance of understanding human logic regarding roadworks activities, in ongoing management of roadside vegetation, and has important consequences regarding conservation of these unique environments.

Cover page of WILDLAND ROAD REMOVAL: RESEARCH NEEDS

WILDLAND ROAD REMOVAL: RESEARCH NEEDS

(2003)

Wildland road removal is a common practice across the U.S. and in some parts of Canada. The main types of road removal include ripping, stream crossing restoration, and full recontour. Road removal creates a short-term disturbance that may temporarily increase sediment loss. However, research and long-term monitoring have shown that road removal both reduces erosion rates and the risk of road-induced landslides. Research is needed to determine whether road removal is effective at restoring ecosystem processes and wildlife habitat. We propose several research questions and the types of studies needed to further road removal efforts. With greater understanding of the impacts of road removal, land managers can more effectively prioritize which roads to leave open and which roads to consider for future road removal projects.

Cover page of COLLISIONS BETWEEN LARGE WILDLIFE AND MOTOR VEHICLE IN MAINE: 1998 - 2001

COLLISIONS BETWEEN LARGE WILDLIFE AND MOTOR VEHICLE IN MAINE: 1998 - 2001

(2003)

The Maine Interagency work group on collisions between wildlife and motor vehicles actively tracks the recorded occurrences of crashes of animals with vehicles. As part of its ongoing program of public education, the group first used the maps in 1999. The data are gained from crash reports filed by law enforcement personnel. The Maine Department of Transportation’s traffic statistic’s section analyses the information. The effort is then developed into map graphics by the department’s cartographic unit. Associated crash data and driving tips are also included on the maps. These are circulated to other state agencies, towns, schools and tourism facilities throughout the state and have received a variety of positive responses. Information on crash locations as mapped is utilized by the work group to determine chronic crash locales and for potential sites to install mitigation methodologies.

Cover page of THE ADVERSE EFFECTS TO FISHES OF PILE-DRIVING - THE IMPLICATIONS FOR ESA AND EFH CONSULTATIONS IN THE PACIFIC NORTHWEST

THE ADVERSE EFFECTS TO FISHES OF PILE-DRIVING - THE IMPLICATIONS FOR ESA AND EFH CONSULTATIONS IN THE PACIFIC NORTHWEST

(2003)

Piles are integral components of many overwater and in-water structures, providing support for piers and bridges, functioning as fenders and dolphins to protect other structures, and are used to construct breakwaters and bulkheads. While treated-wood and concrete piles are commonly used for construction of these structures, there is a growing trend toward the use of hollow steel piles. In the Pacific Northwest, several recently-reported fish-kills that occurred during the installation of piles have raised concern among Federal and state agencies charged with protecting aquatic resources. Federal concern centers primarily on implementation of Section 7 of the Endangered Species Act (ESA) and the Essential Fish Habitat (EFH) provisions of the Magnuson-Stevens Fishery Conservation and Management Act. Injuries to fishes inflicted by pile driving are poorly studied, but include rupture of the swim bladder and internal hemorrhaging. The mechanism of injury appears to be the intense underwater pressure wave generated during some pile-driving activities. The type and intensity of the underwater sounds produced depend on a variety of factors, including, but not limited to, the type and size of the pile, the firmness of the substrate and depth of water into which the pile is being driven, and the type and size of the pile-driving hammer. In general, driving steel piles with an impact hammer appears to generate pressure waves that are more harmful than those generated by impact-driving of concrete or wood piles, or by vibratory-hammer driving of any type of pile. Of the reported fish-kills, all have occurred during impact-driving of steel piles. However, conditions required to produce sound pressure waves that can injure or kill fishes are not presently understood. Recent reports of fishes killed during pile driving are producing changes in the way that such activities are being viewed by the Washington State Habitat Branch of the National Marine Fisheries Service during ESA and EFH consultations. These changes include requirements for hydro-acoustic monitoring of the sound pressure levels generated during pile driving, and, if maximum thresholds are exceeded, the incorporation of measures to reduce those sound pressure levels. This presentation discusses the approach taken by the Washington State Habitat Branch to address the uncertainties associated with pile driving and the adverse effects this activity may have on ESA-listed salmonids and EFH.