Skip to main content
Open Access Publications from the University of California

Open Access Policy Deposits

This series is automatically populated with publications deposited by UC Davis School of Medicine Department of Neurology researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Therapeutic Potentials of Poly (ADP-Ribose) Polymerase 1 (PARP1) Inhibition in Multiple Sclerosis and Animal Models: Concept Revisiting.


Poly (ADP-ribose) polymerase 1 (PARP1) plays a fundamental role in DNA repair and gene expression. Excessive PARP1 hyperactivation, however, has been associated with cell death. PARP1 and/or its activity are dysregulated in the immune and central nervous system of multiple sclerosis (MS) patients and animal models. Pharmacological PARP1 inhibition is shown to be protective against immune activation and disease severity in MS animal models while genetic PARP1 deficiency studies reported discrepant results. The inconsistency suggests that the function of PARP1 and PARP1-mediated PARylation may be complex and context-dependent. The article reviews PARP1 functions, discusses experimental findings and possible interpretations of PARP1 in inflammation, neuronal/axonal degeneration, and oligodendrogliopathy, three major pathological components cooperatively determining MS disease course and neurological progression, and points out future research directions. Cell type specific PARP1 manipulations are necessary for revisiting the role of PARP1 in the three pathological components prior to moving PARP1 inhibition into clinical trials for MS therapy.

Cover page of Strain differences in the extent of brain injury in mice after tetramethylenedisulfotetramine-induced status epilepticus.

Strain differences in the extent of brain injury in mice after tetramethylenedisulfotetramine-induced status epilepticus.


Acute intoxication with tetramethylenedisulfotetramine (TETS) can trigger status epilepticus (SE) in humans. Survivors often exhibit long-term neurological effects, including electrographic abnormalities and cognitive deficits, but the pathogenic mechanisms linking the acute toxic effects of TETS to chronic outcomes are not known. Here, we use advanced in vivo imaging techniques to longitudinally monitor the neuropathological consequences of TETS-induced SE in two different mouse strains. Adult male NIH Swiss and C57BL/6J mice were injected with riluzole (10 mg/kg, i.p.), followed 10 min later by an acute dose of TETS (0.2 mg/kg in NIH Swiss; 0.3 mg/kg, i.p. in C57BL/6J) or an equal volume of vehicle (10% DMSO in 0.9% sterile saline). Different TETS doses were administered to trigger comparable seizure behavior between strains. Seizure behavior began within minutes of TETS exposure and rapidly progressed to SE that was terminated after 40 min by administration of midazolam (1.8 mg/kg, i.m.). The brains of vehicle and TETS-exposed mice were imaged using in vivo magnetic resonance (MR) and translocator protein (TSPO) positron emission tomography (PET) at 1, 3, 7, and 14 days post-exposure to monitor brain injury and neuroinflammation, respectively. When the brain scans of TETS mice were compared to those of vehicle controls, subtle and transient neuropathology was observed in both mouse strains, but more extensive and persistent TETS-induced neuropathology was observed in C57BL/6J mice. In addition, one NIH Swiss TETS mouse that did not respond to the midazolam therapy, but remained in SE for more than 2 h, displayed robust neuropathology as determined by in vivo imaging and confirmed by FluoroJade C staining and IBA-1 immunohistochemistry as readouts of neurodegeneration and neuroinflammation, respectively. These findings demonstrate that the extent of injury observed in the mouse brain after TETS-induced SE varied according to strain, dose of TETS and/or the duration of SE. These observations suggest that TETS-intoxicated humans who do not respond to antiseizure medication are at increased risk for brain injury.

Frontal white matter lesions in Alzheimer's disease are associated with both small vessel disease and AD-associated cortical pathology.


Cerebral white matter lesions (WML) encompass axonal loss and demyelination and are assumed to be associated with small vessel disease (SVD)-related ischaemia. However, our previous study in the parietal lobe white matter revealed that WML in Alzheimer's disease (AD) are linked with degenerative axonal loss secondary to the deposition of cortical AD pathology. Furthermore, neuroimaging data suggest that pathomechanisms for the development of WML differ between anterior and posterior lobes with AD-associated degenerative mechanism driving posterior white matter disruption, and both AD-associated degenerative and vascular mechanisms contributed to anterior matter disruption. In this pilot study, we used human post-mortem brain tissue to investigate the composition and aetiology of frontal WML from AD and non-demented controls to determine if frontal WML are SVD-associated and to reveal any regional differences in the pathogenesis of WML. Frontal WML tissue sections from 40 human post-mortem brains (AD, n = 19; controls, n = 21) were quantitatively assessed for demyelination, axonal loss, cortical hyperphosphorylated tau (HPτ) and amyloid-beta (Aβ) burden, and arteriolosclerosis as a measure of SVD. Biochemical assessment included Wallerian degeneration-associated protease calpain and the myelin-associated glycoprotein to proteolipid protein ratio as a measure of ante-mortem ischaemia. Arteriolosclerosis severity was found to be associated with and a significant predictor of frontal WML severity in both AD and non-demented controls. Interesting, frontal axonal loss was also associated with HPτ and calpain levels were associated with increasing Aβ burden in the AD group, suggestive of an additional degenerative influence. To conclude, this pilot data suggest that frontal WML in AD may result from both increased arteriolosclerosis and AD-associated degenerative changes. These preliminary findings in combination with previously published data tentatively indicate regional differences in the aetiology of WML in AD, which should be considered in the clinical diagnosis of dementia subtypes: posterior WML maybe associated with degenerative mechanisms secondary to AD pathology, while anterior WML could be associated with both SVD-associated and degenerative mechanisms.

Cover page of Neuropathology in the LifeAfter90 study: A new ethnically diverse cohort study of oldest-old.

Neuropathology in the LifeAfter90 study: A new ethnically diverse cohort study of oldest-old.


Persons over the age of 90 are the fastest growing segment of the population in the US, yet there is a dearth of studies investigating the underlying neuropathology of cognitive impairment and dementias, in ethnically diverse, non-white decedents. The Life after 90 study began enrollment in July 2018 and is an ongoing cohort study of members of Kaiser Permanente Northern California aged 90+ with targeted recruitment of individuals across different racial/ethnic groups with no prior diagnosis of dementia in their medical record. Participants are examined every 6 months. Brain donation was available to all interested consenting participants. Neuropathology was assessed using the National Alzheimer's Coordinating Center Neuropathology form v. 10. As of January 2021, 173 (26%) participants enrolled in autopsy (18% Asian, 12% African American, 12% Latino, and 10% as multiracial) with 8 deceased and neuropathological evaluations completed. Average age of death was 96 years (range 91 to 105), 5 (62.5%) were female, 3 Latino, 3 Caucasian, and 2 multiracial. At the final clinical exam, which was on average 4 months before death (range: 2-8), 2 participant had dementia (25%), 3 questionable/mild cognitive impairment (37.5%), and 3 cognitively normal (37.5%). With respect to a neuropathologic diagnosis of Alzheimer's disease (AD), 2 met criteria for intermediate likelihood (25%), 4 low (50%), and 2 were considered not to have AD (25%). Notably, none had high likelihood of AD. All participants had some level of neurofibrillary tangles with Braak stages between II and IV. Two participants lacked plaques (Amyloid-Beta or neuritic types), and the highest Thal phase was 4. Four participants (50%) had Lewy bodies (LBs), 1 in olfactory bulb/tract only, 2 Transitional, and 1 with Diffuse. Hippocampal sclerosis was not seen in any whereas TDP-43 inclusions were detected in 2 participants (25%). Diffuse LB, TDP-43 inclusions, and intermediate AD co-occurred in one (50%) of the dementia participants while all lacking in the other. Preliminary results of the first 8 deaths in this multiethnic cohort of oldest-old individuals indicate that numerous brain pathologies are present with advanced age. Further work with this study will examine the clinical impact of this pathological heterogeneity.

Cover page of Plasma phosphorylated-tau181 as a predictive biomarker for Alzheimer's amyloid, tau and FDG PET status.

Plasma phosphorylated-tau181 as a predictive biomarker for Alzheimer's amyloid, tau and FDG PET status.


Plasma phosphorylated-tau181 (p-tau181) showed the potential for Alzheimer's diagnosis and prognosis, but its role in detecting cerebral pathologies is unclear. We aimed to evaluate whether it could serve as a marker for Alzheimer's pathology in the brain. A total of 1189 participants with plasma p-tau181 and PET data of amyloid, tau or FDG PET were included from ADNI. Cross-sectional relationships of plasma p-tau181 with PET biomarkers were tested. Longitudinally, we further investigated whether different p-tau181 levels at baseline predicted different progression of Alzheimer's pathological changes in the brain. We found plasma p-tau181 significantly correlated with brain amyloid (Spearman ρ = 0.45, P < 0.0001), tau (0.25, P = 0.0003), and FDG PET uptakes (-0.37, P < 0.0001), and increased along the Alzheimer's continuum. Individually, plasma p-tau181 could detect abnormal amyloid, tau pathologies and hypometabolism in the brain, similar with or even better than clinical indicators. The diagnostic accuracy of plasma p-tau181 elevated significantly when combined with clinical information (AUC = 0.814 for amyloid PET, 0.773 for tau PET, and 0.708 for FDG PET). Relationships of plasma p-tau181 with brain pathologies were partly or entirely mediated by the corresponding CSF biomarkers. Besides, individuals with abnormal plasma p-tau181 level (>18.85 pg/ml) at baseline had a higher risk of pathological progression in brain amyloid (HR: 2.32, 95%CI 1.32-4.08) and FDG PET (3.21, 95%CI 2.06-5.01) status. Plasma p-tau181 may be a sensitive screening test for detecting brain pathologies, and serve as a predictive biomarker for Alzheimer's pathophysiology.

Cover page of Molecular Correlates of Hemorrhage and Edema Volumes Following Human Intracerebral Hemorrhage Implicate Inflammation, Autophagy, mRNA Splicing, and T Cell Receptor Signaling.

Molecular Correlates of Hemorrhage and Edema Volumes Following Human Intracerebral Hemorrhage Implicate Inflammation, Autophagy, mRNA Splicing, and T Cell Receptor Signaling.


Intracerebral hemorrhage (ICH) and perihematomal edema (PHE) volumes are major determinants of ICH outcomes as is the immune system which plays a significant role in damage and repair. Thus, we performed whole-transcriptome analyses of 18 ICH patients to delineate peripheral blood genes and networks associated with ICH volume, absolute perihematomal edema (aPHE) volume, and relative PHE (aPHE/ICH; rPHE). We found 440, 266, and 391 genes correlated with ICH and aPHE volumes and rPHE, respectively (p < 0.005, partial-correlation > |0.6|). These mainly represented inflammatory pathways including NF-κB, TREM1, and Neuroinflammation Signaling-most activated with larger volumes. Weighted Gene Co-Expression Network Analysis identified seven modules significantly correlated with these measures (p < 0.05). Most modules were enriched in neutrophil, monocyte, erythroblast, and/or T cell-specific genes. Autophagy, apoptosis, HIF-1α, inflammatory and neuroinflammatory response (including Toll-like receptors), cell adhesion (including MMP9), platelet activation, T cell receptor signaling, and mRNA splicing were represented in these modules (FDR p < 0.05). Module hub genes, potential master regulators, were enriched in neutrophil-specific genes in three modules. Hub genes included NCF2, NCF4, STX3, and CSF3R, and involved immune response, autophagy, and neutrophil chemotaxis. One module that correlated negatively with ICH volume correlated positively with rPHE. Its genes and hubs were enriched in T cell-specific genes including hubs LCK and ITK, Src family tyrosine kinases whose modulation improved outcomes and reduced BBB dysfunction following experimental ICH. This study uncovers molecular underpinnings associated with ICH and PHE volumes and pathophysiology in human ICH, where knowledge is scarce. The identified pathways and hub genes may represent novel therapeutic targets.

Cover page of Excessive Laughter-like Vocalizations, Microcephaly, and Translational Outcomes in the <i>Ube3a</i> Deletion Rat Model of Angelman Syndrome.

Excessive Laughter-like Vocalizations, Microcephaly, and Translational Outcomes in the Ube3a Deletion Rat Model of Angelman Syndrome.


Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder characterized by intellectual disabilities, motor and balance deficits, impaired communication, and a happy, excitable demeanor with frequent laughter. We sought to elucidate a preclinical outcome measure in male and female rats that addressed communication abnormalities of AS and other neurodevelopmental disorders in which communication is atypical and/or lack of speech is a core feature. We discovered, and herein report for the first time, excessive laughter-like 50 kHz ultrasonic emissions in the Ube3a mat-/pat+ rat model of AS, which suggests an excitable, playful demeanor and elevated positive affect, similar to the demeanor of individuals with AS. Also in line with the AS phenotype, Ube3a mat-/pat+ rats demonstrated aberrant social interactions with a novel partner, distinctive gait abnormalities, impaired cognition, an underlying LTP deficit, and profound reductions in brain volume. These unique, robust phenotypes provide advantages compared with currently available mouse models and will be highly valuable as outcome measures in the evaluation of therapies for AS.SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a severe neurogenetic disorder for which there is no cure, despite decades of research using mouse models. This study used a recently developed rat model of AS to delineate disease-relevant outcome measures to facilitate therapeutic development. We found the rat to be a strong model of AS, offering several advantages over mouse models by exhibiting numerous AS-relevant phenotypes, including overabundant laughter-like vocalizations, reduced hippocampal LTP, and volumetric anomalies across the brain. These findings are unconfounded by detrimental motor abilities and background strain, issues plaguing mouse models. This rat model represents an important advancement in the field of AS, and the outcome metrics reported herein will be central to the therapeutic pipeline.

Plasma amyloid β levels are driven by genetic variants near APOE, BACE1, APP, PSEN2: A genome-wide association study in over 12,000 non-demented participants.



There is increasing interest in plasma amyloid beta (Aβ) as an endophenotype of Alzheimer's disease (AD). Identifying the genetic determinants of plasma Aβ levels may elucidate important biological processes that determine plasma Aβ measures.


We included 12,369 non-demented participants from eight population-based studies. Imputed genetic data and measured plasma Aβ1-40, Aβ1-42 levels and Aβ1-42/Aβ1-40 ratio were used to perform genome-wide association studies, and gene-based and pathway analyses. Significant variants and genes were followed up for their association with brain positron emission tomography Aβ deposition and AD risk.


Single-variant analysis identified associations with apolipoprotein E (APOE) for Aβ1-42 and Aβ1-42/Aβ1-40 ratio, and BACE1 for Aβ1-40. Gene-based analysis of Aβ1-40 additionally identified associations for APP, PSEN2, CCK, and ZNF397. There was suggestive evidence for interaction between a BACE1 variant and APOE ε4 on brain Aβ deposition.


Identification of variants near/in known major Aβ-processing genes strengthens the relevance of plasma-Aβ levels as an endophenotype of AD.

Bone Mineral Density Measurements and Association With Brain Structure and Cognitive Function: The Framingham Offspring Cohort.



Bone mineral density (BMD) is a potential surrogate marker of lifetime estrogen exposure previously linked to increased risk of Alzheimer dementia among elderly women. We examine the association between BMD in the "young old" with imaging biomarkers of brain aging and cognitive performance.


Offspring participants (N=1905, mean age 66) of a population-based cohort who had BMD, brain imaging and detailed cognitive assessment were included in the study. Sex-stratified, linear, and logistic regression models were used for analysis.


Higher femoral neck BMD was associated with lower white matter hyperintensity burden and better performance on Trails B-A in both sexes, even after adjustment for cerebrovascular risk factors. Among women, the positive association with Trails B-A performance was seen only in APOE4 allele carriers. Higher BMD measurements were linked to better visual reproductions test performance in men. Finally, among women, higher femoral trochanter BMD was associated with better logical memory and Hooper visual organization test performance.


Among the "young old," higher BMD is associated with less white matter hyperintensity burden and better, domain-specific, cognitive performance. This suggests that lifetime estrogen exposure may modulate the degree of cumulative vascular brain injury independent of cerebrovascular risk factors.

Cover page of Staging tau pathology with tau PET in Alzheimer's disease: a longitudinal study.

Staging tau pathology with tau PET in Alzheimer's disease: a longitudinal study.


A biological research framework to define Alzheimer' disease with dichotomized biomarker measurement was proposed by National Institute on Aging-Alzheimer's Association (NIA-AA). However, it cannot characterize the hierarchy spreading pattern of tau pathology. To reflect in vivo tau progression using biomarker, we constructed a refined topographic 18F-AV-1451 tau PET staging scheme with longitudinal clinical validation. Seven hundred and thirty-four participants with baseline 18F-AV-1451 tau PET (baseline age 73.9 ± 7.7 years, 375 female) were stratified into five stages by a topographic PET staging scheme. Cognitive trajectories and clinical progression were compared across stages with or without further dichotomy of amyloid status, using linear mixed-effect models and Cox proportional hazard models. Significant cognitive decline was first observed in stage 1 when tau levels only increased in transentorhinal regions. Rates of cognitive decline and clinical progression accelerated from stage 2 to stage 3 and stage 4. Higher stages were also associated with greater CSF phosphorylated tau and total tau concentrations from stage 1. Abnormal tau accumulation did not appear with normal β-amyloid in neocortical regions but prompt cognitive decline by interacting with β-amyloid in temporal regions. Highly accumulated tau in temporal regions independently led to cognitive deterioration. Topographic PET staging scheme have potentials in early diagnosis, predicting disease progression, and studying disease mechanism. Characteristic tau spreading pattern in Alzheimer's disease could be illustrated with biomarker measurement under NIA-AA framework. Clinical-neuroimaging-neuropathological studies in other cohorts are needed to validate these findings.