Skip to main content
eScholarship
Open Access Publications from the University of California

Open Access Policy Deposits

This series is automatically populated with publications deposited by UC Davis School of Medicine Department of Neurology researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Cover page of Tolerability and pharmacokinetics of intravenous allopregnanolone with and without midazolam pretreatment in two healthy dogs.

Tolerability and pharmacokinetics of intravenous allopregnanolone with and without midazolam pretreatment in two healthy dogs.

(2023)

The neurosteroid allopregnanolone (ALLO) is under investigation as a treatment for benzodiazepine-refractory status epilepticus (SE). Here, we assess the cardiopulmonary safety of intravenous ALLO by itself and after a clinically recommended dose of midazolam (MDZ) in two healthy adult beagles. Each dog received ALLO (1 mg/kg, IV), and after a washout period of 2 weeks, each dog was dosed with MDZ (0.2 mg/kg, IV) followed 10 minutes later by ALLO. Behavioral state, vital signs, arterial blood gases, blood chemistries, and plasma ALLO concentrations were monitored for up to 6 hours after dosing. The dogs appeared sleepy but were fully responsive after both treatments. No depression of mean arterial pressure or respiratory rate was noted. Blood gas measurements failed to show evidence of drug-induced acute respiratory acidosis. Estimated maximum plasma ALLO concentrations were in the range of 1500 to 3000 ng/ml. The results indicate that intravenous ALLO can be used safely to treat benzodiazepine-refractory SE, even when administered shortly after a benzodiazepine.

The Collaborative Approach for Asian Americans and Pacific Islanders Research and Education (CARE): A recruitment registry for Alzheimer's disease and related dementias, aging, and caregiver-related research.

(2023)

Introduction

Clinical research focused on aging, Alzheimer's disease and related dementias (ADRD), and caregiving often does not recruit Asian Americans and Pacific Islanders (AAPIs).

Methods

With funding from the National Institute on Aging, we designed and launched the Collaborative Approach for AAPIs Research and Education (CARE), a research recruitment registry to increase AAPIs' participation in ADRD, aging, and caregiving research. We present the design of this novel recruitment program.

Results

CARE uses community-based participatory research methods that are culturally and linguistically appropriate. Since CARE's launch, it has enrolled >7000 AAPIs in a 1-year period. The majority enrolled in CARE via community organizations and reported never having participated in any kind of research before. CARE also engages researchers by establishing a recruitment referral request protocol.

Discussion

CARE provides a promising venue to foster meaningful inclusion of AAPIs who are under-represented in aging and dementia-related research.

Cover page of APOE Effects on Late Life Cognitive Trajectories in Diverse Racial/Ethnic Groups.

APOE Effects on Late Life Cognitive Trajectories in Diverse Racial/Ethnic Groups.

(2023)

Objective

This study evaluated: (1) apolipoprotein E (APOE) ϵ4 prevalence among Black, Latino, and White older adults, (2) associations of APOE ϵ4 status with baseline level and change over time of cognitive outcomes across groups, and (3) combined impact of APOE ϵ4 prevalence and magnitude of effect on cognitive decline within each racial/ethnic group.

Method

Participants included 297 White, 138 Latino, and 149 Black individuals from the longitudinal UC Davis Diversity Cohort who had APOE genotyping and ≥2 cognitive assessments. Magnitude of associations of ϵ4 with cognitive baseline and change across racial/ethnic groups was tested with multilevel parallel process longitudinal analyses and multiple group models.

Results

ϵ4 prevalence in Black (46%) and White participants (46%) was almost double that of Latino participants (24%). ϵ4 was associated with poorer baseline episodic memory only in White participants (p = .001), but had a moderately strong association with episodic memory change across all racial/ethnic groups (Blacks= -.061 SD/year, Latinos = -.055,Whites= -.055). ϵ4 association with semantic memory change was strongest in White participants (-.071), intermediate in Latino participants (-.041), and weakest in Black participants (-.022).

Conclusion

Calculated cognitive trajectories across racial/ethnic groups were influenced in an additive manner by ϵ4 prevalence and strength of association with cognitive decline within the group. Group differences in ϵ4 prevalences and associations of ϵ4 with cognition may suggest different pathways from APOE to cognitive decline, and, AD possibly having less salient impact on cognitive decline in non-White participants. Differential effects of APOE on episodic memory and non-memory cognition have important implications for understanding how APOE influences late life cognitive decline.

Cover page of Different loneliness types, cognitive function, and brain structure in midlife: Findings from the Framingham Heart Study.

Different loneliness types, cognitive function, and brain structure in midlife: Findings from the Framingham Heart Study.

(2022)

Background

It remains unclear whether persistent loneliness is related to brain structures that are associated with cognitive decline and development of Alzheimer's disease (AD). This study aimed to investigate the relationships between different loneliness types, cognitive functioning, and regional brain volumes.

Methods

Loneliness was measured longitudinally, using the item from the Center for Epidemiologic Studies Depression Scale in the Framingham Heart Study, Generation 3, with participants' average age of 46·3 ± 8·6 years. Robust regression models tested the association between different loneliness types with longitudinal neuropsychological performance (n = 2,609) and regional magnetic resonance imaging brain data (n = 1,829) (2002-2019). Results were stratified for sex, depression, and Apolipoprotein E4 (ApoE4).

Findings

Persistent loneliness, but not transient loneliness, was strongly associated with cognitive decline, especially memory and executive function. Persistent loneliness was negatively associated with temporal lobe volume (β = -0.18, 95%CI [-0.32, -0.04], P = 0·01). Among women, persistent loneliness was associated with smaller frontal lobe (β = -0.19, 95%CI [-0.38, -0.01], P = 0·04), temporal lobe (β = -0.20, 95%CI [-0.37, -0.03], P = 0·02), and hippocampus volumes (β = -0.23, 95%CI [-0.40, -0.06], P = 0·007), and larger lateral ventricle volume (β = 0.15, 95%CI [0.02, 0.28], P = 0·03). The higher cumulative loneliness scores across three exams, the smaller parietal, temporal, and hippocampus volumes and larger lateral ventricle were evident, especially in the presence of ApoE4.

Interpretation

Persistent loneliness in midlife was associated with atrophy in brain regions responsible for memory and executive dysfunction. Interventions to reduce the chronicity of loneliness may mitigate the risk of age-related cognitive decline and AD.

Funding

US National Institute on Aging.

Cover page of A population-based meta-analysis of circulating GFAP for cognition and dementia risk.

A population-based meta-analysis of circulating GFAP for cognition and dementia risk.

(2022)

Objective

Expression of glial fibrillary acidic protein (GFAP), a marker of reactive astrocytosis, colocalizes with neuropathology in the brain. Blood levels of GFAP have been associated with cognitive decline and dementia status. However, further examinations at a population-based level are necessary to broaden generalizability to community settings.

Methods

Circulating GFAP levels were assayed using a Simoa HD-1 analyzer in 4338 adults without prevalent dementia from four longitudinal community-based cohort studies. The associations between GFAP levels with general cognition, total brain volume, and hippocampal volume were evaluated with separate linear regression models in each cohort with adjustment for age, sex, education, race, diabetes, systolic blood pressure, antihypertensive medication, body mass index, apolipoprotein E ε4 status, site, and time between GFAP blood draw and the outcome. Associations with incident all-cause and Alzheimer's disease dementia were evaluated with adjusted Cox proportional hazard models. Meta-analysis was performed on the estimates derived from each cohort using random-effects models.

Results

Meta-analyses indicated that higher circulating GFAP associated with lower general cognition (ß = -0.09, [95% confidence interval [CI]: -0.15 to -0.03], p = 0.005), but not with total brain or hippocampal volume (p > 0.05). However, each standard deviation unit increase in log-transformed GFAP levels was significantly associated with a 2.5-fold higher risk of incident all-cause dementia (Hazard Ratio [HR]: 2.47 (95% CI: 1.52-4.01)) and Alzheimer's disease dementia (HR: 2.54 [95% CI: 1.42-4.53]) over up to 15-years of follow-up.

Interpretation

Results support the potential role of circulating GFAP levels for aiding dementia risk prediction and improving clinical trial stratification in community settings.

Cover page of Touchscreen cognitive deficits, hyperexcitability and hyperactivity in males and females using two models of Cdkl5 deficiency.

Touchscreen cognitive deficits, hyperexcitability and hyperactivity in males and females using two models of Cdkl5 deficiency.

(2022)

Many neurodevelopmental disorders (NDDs) are the result of mutations on the X chromosome. One severe NDD resulting from mutations on the X chromosome is CDKL5 deficiency disorder (CDD). CDD is an epigenetic, X-linked NDD characterized by intellectual disability (ID), pervasive seizures and severe sleep disruption, including recurring hospitalizations. CDD occurs at a 4:1 ratio, with a female bias. CDD is driven by the loss of cyclin-dependent kinase-like 5 (CDKL5), a serine/threonine kinase that is essential for typical brain development, synapse formation and signal transmission. Previous studies focused on male subjects from animal models, likely to avoid the complexity of X mosaicism. For the first time, we report translationally relevant behavioral phenotypes in young adult (8-20 weeks) females and males with robust signal size, including impairments in learning and memory, substantial hyperactivity and increased susceptibility to seizures/reduced seizure thresholds, in both sexes, and in two models of CDD preclinical mice, one with a general loss-of-function mutation and one that is a patient-derived mutation.

Cover page of Neural computations underlying contextual processing in humans.

Neural computations underlying contextual processing in humans.

(2022)

Context shapes our perception of facial expressions during everyday social interactions. We interpret a person's face in a hostile situation negatively and judge the same face under pleasant circumstances positively. Critical to our adaptive fitness, context provides situation-specific framing to resolve ambiguity and guide our interpersonal behavior. This context-specific modulation of facial expression is thought to engage the amygdala, hippocampus, and orbitofrontal cortex; however, the underlying neural computations remain unknown. Here we use human intracranial electroencephalograms (EEGs) directly recorded from these regions and report bidirectional theta-gamma interactions within the amygdala-hippocampal network, facilitating contextual processing. Contextual information is subsequently represented in the orbitofrontal cortex, where a theta phase shift binds context and face associations within theta cycles, endowing faces with contextual meanings at behavioral timescales. Our results identify theta phase shifts as mediating associations between context and face processing, supporting flexible social behavior.

Cover page of Assessing the Clinical Meaningfulness of the Alzheimer's Disease Composite Score (ADCOMS) Tool.

Assessing the Clinical Meaningfulness of the Alzheimer's Disease Composite Score (ADCOMS) Tool.

(2022)

Introduction

The Alzheimer's Disease Composite Score (ADCOMS) is a tool developed to detect clinical progression and measure treatment effect in patients in early stages of Alzheimer's disease (AD). The psychometric properties of the ADCOMS have been established; however, the threshold for clinical meaningfulness has yet to be identified.

Methods

Anchor-based, distribution-based, and ROC curve analyses were used to estimate clinically meaningful thresholds for change in ADCOMS for patients with mild cognitive impairment (MCI) and AD dementia. This study included data from three sources: the Alzheimer's Disease Neuroimaging Initiative (ADNI), the National Alzheimer's Coordinating Center (NACC), and a legacy dataset that included data from four sources: the placebo group from three MCI trials and an earlier data cut from ADNI. Results were stratified by disease severity (MCI vs. dementia) and APOE ε4 carrier status.

Results

A total of 5355 participants were included in the analysis. The ADCOMS was able to detect change for MCI and dementia patients who experienced a meaningful decline in cognition (as defined by the Clinical Dementia Rating Scale Sum of Boxes [CDR-SOB]) between baseline and month 12. The following ADCOMS cut-offs were proposed: 0.05 for MCI and 0.10 for dementia.

Conclusions

The ADCOMS was previously established as a valid and reliable tool for use in clinical trials for MCI due to AD and dementia populations. By defining thresholds for clinically meaningful change of ADCOMS, this work is an important step in interpreting clinical findings and estimates of treatment effects in early stage AD trials.

Cover page of The trend of disruption in the functional brain network topology of Alzheimer's disease.

The trend of disruption in the functional brain network topology of Alzheimer's disease.

(2022)

Alzheimer's disease (AD) is a progressive disorder associated with cognitive dysfunction that alters the brain's functional connectivity. Assessing these alterations has become a topic of increasing interest. However, a few studies have examined different stages of AD from a complex network perspective that cover different topological scales. This study used resting state fMRI data to analyze the trend of functional connectivity alterations from a cognitively normal (CN) state through early and late mild cognitive impairment (EMCI and LMCI) and to Alzheimer's disease. The analyses had been done at the local (hubs and activated links and areas), meso (clustering, assortativity, and rich-club), and global (small-world, small-worldness, and efficiency) topological scales. The results showed that the trends of changes in the topological architecture of the functional brain network were not entirely proportional to the AD progression. There were network characteristics that have changed non-linearly regarding the disease progression, especially at the earliest stage of the disease, i.e., EMCI. Further, it has been indicated that the diseased groups engaged somatomotor, frontoparietal, and default mode modules compared to the CN group. The diseased groups also shifted the functional network towards more random architecture. In the end, the methods introduced in this paper enable us to gain an extensive understanding of the pathological changes of the AD process.

Cover page of Interaction between Alzheimer's Disease and Cerebral Small Vessel Disease: A Review Focused on Neuroimaging Markers.

Interaction between Alzheimer's Disease and Cerebral Small Vessel Disease: A Review Focused on Neuroimaging Markers.

(2022)

Alzheimer's disease (AD) is characterized by the presence of β-amyloid (Aβ) and tau, and subcortical vascular cognitive impairment (SVCI) is characterized by cerebral small vessel disease (CSVD). They are the most common causes of cognitive impairment in the elderly population. Concurrent CSVD burden is more commonly observed in AD-type dementia than in other neurodegenerative diseases. Recent developments in Aβ and tau positron emission tomography (PET) have enabled the investigation of the relationship between AD biomarkers and CSVD in vivo. In this review, we focus on the interaction between AD and CSVD markers and the clinical effects of these two markers based on molecular imaging studies. First, we cover the frequency of AD imaging markers, including Aβ and tau, in patients with SVCI. Second, we discuss the relationship between AD and CSVD markers and the potential distinct pathobiology of AD markers in SVCI compared to AD-type dementia. Next, we discuss the clinical effects of AD and CSVD markers in SVCI, and hemorrhagic markers in cerebral amyloid angiopathy. Finally, this review provides both the current challenges and future perspectives for SVCI.