Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

UC Riverside Previously Published Works

Cover page of Tracing histoplasmosis genomic epidemiology and species occurrence across the USA.

Tracing histoplasmosis genomic epidemiology and species occurrence across the USA.

(2024)

ABSTRACTHistoplasmosis is an endemic mycosis in North America frequently reported along the Ohio and Mississippi River Valleys, although autochthonous cases occur in non-endemic areas. In the United States, the disease is provoked by two genetically distinct clades of Histoplasma capsulatum sensu lato, Histoplasma mississippiense (Nam1) and H. ohiense (Nam2). To bridge the molecular epidemiological gap, we genotyped 93 Histoplasma isolates (62 novel genomes) including clinical, environmental, and veterinarian samples from a broader geographical range by whole-genome sequencing, followed by evolutionary and species niche modelling analyses. We show that histoplasmosis is caused by two major lineages, H. ohiense and H. mississippiense; with sporadic cases caused by H. suramericanum in California and Texas. While H. ohiense is prevalent in eastern states, H. mississipiense was found to be prevalent in the central and western portions of the United States, but also geographically overlapping in some areas suggesting that these species might co-occur. Species Niche Modelling revealed that H. ohiense thrives in places with warmer and drier conditions, while H. mississippiense is endemic to areas with cooler temperatures and more precipitation. In addition, we predicted multiple areas of secondary contact zones where the two species co-occur, potentially facilitating gene exchange and hybridization. This study provides the most comprehensive understanding of the genomic epidemiology of histoplasmosis in the USA and lays a blueprint for the study of invasive fungal diseases.

Optothermal generation, steady-state trapping, and 3D manipulation of bubbles: an experimental and theoretical analysis of the Marangoni effect

(2024)

Abstract: Since Nobel Laureate Arthur Ashkin first introduced the trapping and manipulation of microparticles using light, numerous studies have explored this technique not only for dielectric/metallic particles but also for organic matter. This advancement has significantly expanded the landscape of non-contact and non-invasive micromanipulation at the nanometric scale. However, micromanipulation of particles with a refractive index smaller than the host medium, n p < n m, proves challenging with Gaussian beams. To overcome this obstacle, a force known as thermocapillary, or the Marangoni force, has emerged as a straightforward trapping mechanism for bubbles in liquids. The Marangoni force results from the surface tension of bubbles, induced either thermally or chemically—by creating a temperature gradient or adding surfactants, respectively. The surface tension gradient on the liquid host induces tangential stress on the bubble wall, causing the bubble to move toward the region of lower surface tension, where it faces less opposing force. When the Marangoni force is generated by a laser beam’s temperature gradient, it becomes an exceptionally effective mechanism for the steady-state trapping and three-dimensional manipulation of bubbles, even with low optical power lasers. This force produces both longitudinal and transversal forces, resembling optical forces, creating a three-dimensional potential well capable of handling bubbles with radii of tens to hundreds of microns. This work provides guidance and demonstrates, both experimentally and theoretically, the step-by-step process of quasi-steady-state trapping and three-dimensional manipulation of bubbles through optothermal effects. The bubbles in question are tens of microns in size, significantly larger than those that optical tweezers can trap/manipulate. Furthermore, the study emphasizes the crucial role of the Marangoni force in this process, outlining its various advantages.

Cover page of Thinking About Sum Scores Yet Again, Maybe the Last Time, We Dont Know, Oh No . . .: A Comment on.

Thinking About Sum Scores Yet Again, Maybe the Last Time, We Dont Know, Oh No . . .: A Comment on.

(2024)

The relative advantages and disadvantages of sum scores and estimated factor scores are issues of concern for substantive research in psychology. Recently, while championing estimated factor scores over sum scores, McNeish offered a trenchant rejoinder to an article by Widaman and Revelle, which had critiqued an earlier paper by McNeish and Wolf. In the recent contribution, McNeish misrepresented a number of claims by Widaman and Revelle, rendering moot his criticisms of Widaman and Revelle. Notably, McNeish chose to avoid confronting a key strength of sum scores stressed by Widaman and Revelle-the greater comparability of results across studies if sum scores are used. Instead, McNeish pivoted to present a host of simulation studies to identify relative strengths of estimated factor scores. Here, we review our prior claims and, in the process, deflect purported criticisms by McNeish. We discuss briefly issues related to simulated data and empirical data that provide evidence of strengths of each type of score. In doing so, we identified a second strength of sum scores: superior cross-validation of results across independent samples of empirical data, at least for samples of moderate size. We close with consideration of four general issues concerning sum scores and estimated factor scores that highlight the contrasts between positions offered by McNeish and by us, issues of importance when pursuing applied research in our field.

Cover page of Electron bifurcation and fluoride efflux systems implicated in defluorination of perfluorinated unsaturated carboxylic acids by Acetobacterium spp.

Electron bifurcation and fluoride efflux systems implicated in defluorination of perfluorinated unsaturated carboxylic acids by Acetobacterium spp.

(2024)

Enzymatic cleavage of C─F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, β-unsaturated per- and polyfluorocarboxylic acids by Acetobacterium spp. The microbial defluorination products were structurally confirmed and showed regiospecificity and stereospecificity, consistent with their formation by enzymatic reactions. A comparison of defluorination activities among several Acetobacterium species indicated that a functional fluoride exporter was required for the detoxification of the released fluoride. Results from both in vivo inhibition tests and in silico enzyme modeling suggested the involvement of enzymes of the flavin-based electron-bifurcating caffeate reduction pathway [caffeoyl-CoA reductase (CarABCDE)] in the reductive defluorination. This is a report on specific microorganisms carrying out enzymatic reductive defluorination of PFAS, which could be linked to electron-bifurcating reductases that are environmentally widespread.

Cover page of Multi-omics analysis of green lineage osmotic stress pathways unveils crucial roles of different cellular compartments.

Multi-omics analysis of green lineage osmotic stress pathways unveils crucial roles of different cellular compartments.

(2024)

Maintenance of water homeostasis is a fundamental cellular process required by all living organisms. Here, we use the single-celled green alga Chlamydomonas reinhardtii to establish a foundational understanding of osmotic-stress signaling pathways through transcriptomics, phosphoproteomics, and functional genomics approaches. Comparison of pathways identified through these analyses with yeast and Arabidopsis allows us to infer their evolutionary conservation and divergence across these lineages. 76 genes, acting across diverse cellular compartments, were found to be important for osmotic-stress tolerance in Chlamydomonas through their functions in cytoskeletal organization, potassium transport, vesicle trafficking, mitogen-activated protein kinase and chloroplast signaling. We show that homologs for five of these genes have conserved functions in stress tolerance in Arabidopsis and reveal a novel PROFILIN-dependent stage of acclimation affecting the actin cytoskeleton that ensures tissue integrity upon osmotic stress. This study highlights the conservation of the stress response in algae and land plants, and establishes Chlamydomonas as a unicellular plant model system to dissect the osmotic stress signaling pathway.

Cover page of Enhancing the Carbon Monoxide Oxidation Performance through Surface Defect Enrichment of Ceria-Based Supports for Platinum Catalyst.

Enhancing the Carbon Monoxide Oxidation Performance through Surface Defect Enrichment of Ceria-Based Supports for Platinum Catalyst.

(2024)

Effective synthesis and application of single-atom catalysts on supports lacking enough defects remain a significant challenge in environmental catalysis. Herein, we present a universal defect-enrichment strategy to increase the surface defects of CeO2-based supports through H2 reduction pretreatment. The Pt catalysts supported by defective CeO2-based supports, including CeO2, CeZrOx, and CeO2/Al2O3 (CA), exhibit much higher Pt dispersion and CO oxidation activity upon reduction activation compared to their counterpart catalysts without defect enrichment. Specifically, Pt is present as embedded single atoms on the CA support with enriched surface defects (CA-HD) based on which the highly active catalyst showing embedded Pt clusters (PtC) with the bottom layer of Pt atoms substituting the Ce cations in the CeO2 surface lattice can be obtained through reduction activation. Embedded PtC can better facilitate CO adsorption and promote O2 activation at PtC-CeO2 interfaces, thereby contributing to the superior low-temperature CO oxidation activity of the Pt/CA-HD catalyst after activation.

Cover page of Locus coeruleus contrast and diffusivity metrics differentially relate to age and memory performance.

Locus coeruleus contrast and diffusivity metrics differentially relate to age and memory performance.

(2024)

Neurocognitive aging researchers are increasingly focused on the locus coeruleus, a neuromodulatory brainstem structure that degrades with age. With this rapid growth, the field will benefit from consensus regarding which magnetic resonance imaging (MRI) metrics of locus coeruleus structure are most sensitive to age and cognition. To address this need, the current study acquired magnetization transfer- and diffusion-weighted MRI images in younger and older adults who also completed a free recall memory task. Results revealed significantly larger differences between younger and older adults for maximum than average magnetization transfer-weighted contrast (MTC), axial than mean or radial single-tensor diffusivity (DTI), and free than restricted multi-compartment diffusion (NODDI) metrics in the locus coeruleus; with maximum MTC being the best predictor of age group. Age effects for all imaging modalities interacted with sex, with larger age group differences in males than females for MTC and NODDI metrics. Age group differences also varied across locus coeruleus subdivision for DTI and NODDI metrics, and across locus coeruleus hemispheres for MTC. Within older adults, however, there were no significant effects of age on MTC or DTI metrics, only an interaction between age and sex for free diffusion. Finally, independent of age and sex, higher restricted diffusion in the locus coeruleus was significantly related to better (lower) recall variability, but not mean recall. Whereas MTC has been widely used in the literature, our comparison between the average and maximum MTC metrics, inclusion of DTI and NODDI metrics, and breakdowns by locus coeruleus subdivision and hemisphere make important and novel contributions to our understanding of the aging of locus coeruleus structure.

Cover page of Eliminating malaria vectors with precision-guided sterile males

Eliminating malaria vectors with precision-guided sterile males

(2024)

Controlling the principal African malaria vector, the mosquito Anopheles gambiae, is considered essential to curtail malaria transmission. However, existing vector control technologies rely on insecticides, which are becoming increasingly ineffective. Sterile insect technique (SIT) is a powerful suppression approach that has successfully eradicated a number of insect pests, yet the A. gambiae toolkit lacks the requisite technologies for its implementation. SIT relies on iterative mass releases of nonbiting, nondriving, sterile males which seek out and mate with monandrous wild females. Once mated, females are permanently sterilized due to mating-induced refractoriness, which results in population suppression of the subsequent generation. However, sterilization by traditional methods renders males unfit, making the creation of precise genetic sterilization methods imperative. Here, we introduce a vector control technology termed precision-guided sterile insect technique (pgSIT), in A. gambiae for inducible, programmed male sterilization and female elimination for wide-scale use in SIT campaigns. Using a binary CRISPR strategy, we cross separate engineered Cas9 and gRNA strains to disrupt male-fertility and female-essential genes, yielding >99.5% male sterility and >99.9% female lethality in hybrid progeny. We demonstrate that these genetically sterilized males have good longevity, are able to induce sustained population suppression in cage trials, and are predicted to eliminate wild A. gambiae populations using mathematical models, making them ideal candidates for release. This work provides a valuable addition to the malaria genetic biocontrol toolkit, enabling scalable SIT-like confinable, species-specific, and safe suppression in the species.

Cover page of Ethnic-Racial Socialization of White Children by White Parents: A Systematic Review

Ethnic-Racial Socialization of White Children by White Parents: A Systematic Review

(2024)

This systematic review of the literature examined the extent and nature of white parent's ethic-racial socialization (ERS) of white children, the factors associated with white parents' ERS, and the child outcomes of white parents' ERS. It followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review included 43 English-language works published between January 2000 and June 2021 and referenced in PsycINFO, PubMed, Web of Science, or Sociological Abstracts. It showed that white parents are engaged in ERS, employing many of the same strategies identified in research with parents of color as well as strategies identified as specific to white families. The review revealed child and parent factors related to ERS and child outcomes of ERS, including racial attitudes. In contrast with parents of color's ERS, white parents' ERS tends to teach strategies of advantage, preparing children to maintain their privilege. We offer recommendations for practice and future research.