We use Bane's approximation to the Bjorken-Mtingwa theory of intrabeam scattering to calculate the emittance growth as a function of bunch charge in the KEK ATF. We find that our results are consistent with the experimental data. We then calculate the emittance growth in the NLC Main Damping Rings using the same formulae; we allow for some uncertainty in the ATF data by using two different values for the Coulomb log factor in the formulae for the emittance growth rates. We find that despite the IBS emittance growth, it should still be possible to achieve the specified transverse and longitudinal emittances in the NLC Main Damping Rings at the specified bunch charge.

# Your search: "author:"Wolski, Andrzej""

## filters applied

## Type of Work

Article (35) Book (0) Theses (0) Multimedia (0)

## Peer Review

Peer-reviewed only (1)

## Supplemental Material

Video (0) Audio (0) Images (0) Zip (0) Other files (0)

## Publication Year

## Campus

UC Berkeley (0) UC Davis (0) UC Irvine (0) UCLA (0) UC Merced (0) UC Riverside (0) UC San Diego (0) UCSF (0) UC Santa Barbara (0) UC Santa Cruz (0) UC Office of the President (0) Lawrence Berkeley National Laboratory (35) UC Agriculture & Natural Resources (0)

## Department

## Journal

## Discipline

## Reuse License

## Scholarly Works (35 results)

The techniques of normal form analysis, well known in the literature, can be used to provide a straightforward characterization of linear betatron dynamics in a coupled lattice. Here, we consider both the beam distribution and the betatron oscillations in a storage ring, assuming that the beam emittances and betatron actions respectively are provided as parameters. We find that the beta functions for uncoupled motion generalize in a simple way to the coupled case. Defined in the way that we propose, the beta functions remain well behaved (positive and finite) under all circumstances, and have essentially the same physical significance for the beam size and betatron oscillations as in the uncoupled case. We discuss a technique for making direct measurements of the ratio of the coupled lattice functions at different points in the lattice.

We describe a simple lattice that meets the specifications for the damping times and horizontal and longitudinal emittances for the International Linear Collider (ILC) damping rings. The circumference of a little over 3 km leads to a bunch spacing of around 3 ns, which will require advances in kicker technology for injection and extraction. We present the lattice design, and initial results of studies of the acceptance and collective effects. With the high bunch charge and close spacing, the ion and electron cloud effects are expected to be severe; however, the simple structure of the lattice allows for easy variation of the circumference and bunch spacing, which may make it useful for future investigations.

The Twiss parameters provide a convenient description of beam optics in uncoupled linear beamlines. For coupled beamlines, a variety of approaches are possible for describing the linear optics; here, we propose an approach and notation that naturally generalizes the familiar Twiss parameters to the coupled case in three degrees of freedom. Our approach is based on an eigensystem analysis of the matrix of second-order beam moments, or alternatively (in the case of a storage ring) on an eigensystem analysis of the linear single-turn map. The lattice functions that emerge from this approach have an interpretation that is conceptually very simple: in particular, the lattice functions directly relate the beam distribution in phase space to the invariant emittances. To emphasize the physical significance of the coupled lattice functions, we develop the theory from first principles, using only the assumption of linear symplectic transport. We also give some examples of the application of this approach, demonstrating its advantages of conceptual and notational simplicity.

We study transverse coupled-bunch instabilities driven by the resistive-wall impedance in the NLC Main Damping Rings. We compare the growth rates of the different modes predicted by a simple theory using a simplified lattice model with the results of a detailed simulation that includes variation of the beta functions and the actual fill structure of the machine. We find that the results of the analytical calculations are in reasonable agreement with the simulations. We include a simple model of a bunch-by-bunch feedback system in the simulation to show that the instabilities can be damped by a feedback system having parameters that are realistic, and possibly conservative. The noise level on the feedback system pick-up must be low, to avoid driving random bunch-to-bunch jitter above the specified limit of 10 percent of the vertical beam size.

We report results from studies of spin dynamics in the NLC Main Damping. Our studies have been based on spin tracking particles through the lattice under a range of conditions. We find that there are a number of spin resonances close to the nominal operating energy of 1.98 GeV; however, the effects of the resonances are weak, and the widths are narrow. We do not expect that any significant depolarization of the beam will occur during the store time.

To achieve the required damping time in the main damping rings for the Next Linear Collider (NLC), a wiggler will be required in each ring with integrated squared field strength up to 110 T^2m. There are concerns that nonlinear components of the wiggler field will damage the dynamic aperture of the ring, leading to poor injection efficiency. Severe effects from an insertion device have been observed and corrected in SPEAR 2. In this paper, we describe a model that we have developed to study the effects of the damping wiggler, compare the predictions of the model with actual experience in the case of the SPEAR 2 wiggler, and consider the predicted effects of current damping wiggler design on the NLC main damping rings.