The interfacial instability between a thiophosphate solid electrolyte and oxide cathodes results in rapid capacity fade and has driven the need for cathode coatings. In this work, the stability, evolution, and performance of uncoated, Li2ZrO3-coated, and Li3B11O18-coated LiNi0.5Co0.2Mn0.3O2 cathodes are compared using first-principles computations and electron microscopy characterization. Li3B11O18 is identified as a superior coating that exhibits excellent oxidation/chemical stability, leading to substantially improved performance over cells with Li2ZrO3-coated or uncoated cathodes. The chemical and structural origin of the different performance is interpreted using different microscopy techniques which enable the direct observation of the phase decomposition of the Li2ZrO3 coating. It is observed that Li is already extracted from the Li2ZrO3 in the first charge, leading to the formation of ZrO2 nanocrystallites with loss of protection of the cathode. After 50 cycles separated (Co, Ni)-sulfides and Mn-sulfides can be observed within the Li2ZrO3-coated material. This work illustrates the severity of the interfacial reactions between a thiophosphate electrolyte and oxide cathode and shows the importance of using coating materials that are absolutely stable at high voltage.