Dynamic network processes have surrounded people for millennia. Information spread through social networks, alliance formation in financial and organizational networks, heat diffusion through material networks, and distributed synchronization in robotic networks are just a few examples. Network processes are studies along three dimensions: analysis of network processes through the data produced by them; designing complex plausible, yet, tractable mathematical models for network processes; and designing control mechanisms that would guide network processes towards desirable evolution patterns. This thesis advances the frontier of knowledge about network processes along each of these three dimensions, emphasizing applications to social networks.
The first part of the thesis is dedicated to the design of a method for model-driven analysis of a polar opinion formation process in social networks. The core of the method is a distance measure quantifying the likelihood of a social network's transitioning between different states with respect to a chosen opinion dynamics model characterizing expected evolution of the network's state. I describe how to design such a distance measure relying upon the classical transportation problem, compute it in linear time, and use it in applications.
In the second part of the thesis, I focus on designing a model for polar opinion formation in social networks, and define a class of non-linear models that capture the dependence of the users' opinion formation behavior upon the opinions themselves. The obtained models are connected to socio-psychological theories, and their behavior is theoretically analyzed employing tools from non-smooth analysis and a generalization of LaSalle Invariance Principle.
The third part of the thesis targets the problem of defense against social control. While the existing socio-psychological theories as well as influence maximization techniques expose the opinion formation process in social networks to external attacks, I propose an algorithm that nullifies the effect of such attacks by strategically recommending a small number of new edges to the network's users. The optimization problem underlying the algorithm is NP-hard, and I provide a pseudo-linear time heuristic---drawing upon the theory of Markov chains---that solves the problem approximately and performs well in experiments.