The analysis of networks, aimed at suitably defined functionality, often
focuses on partitions into subnetworks that capture desired features. Chief
among the relevant concepts is a 2-partition, that underlies the classical
Cheeger inequality, and highlights a constriction (bottleneck) that limits
accessibility between the respective parts of the network. In a similar spirit,
the purpose of the present work is to introduce a new concept of maximal global
circulation and to explore 3-partitions that expose this type of macroscopic
feature of networks. Herein, graph circulation is motivated by transportation
networks and probabilistic flows (Markov chains) on graphs. Our goal is to
quantify the large-scale imbalance of network flows and delineate key parts
that mediate such global features. While we introduce and propose these notions
in a general setting, in this paper, we only work out the case of planar
graphs. We explain that a scalar potential can be identified to encapsulate the
concept of circulation, quite similarly as in the case of the curl of planar
vector fields. Beyond planar graphs, in the general case, the problem to
determine global circulation remains at present a combinatorial problem.