Fluorescence decay studies, obtained by multifrequency phase-modulation fluorometry, have been performed on DAPI in solution and complexed with natural and synthetic polydeoxynucleotides. DAPI decay at pH 7 was decomposed using two exponential components of 2.8 and 0.2 ns of lifetime values, respectively. The double exponential character of the decay was maintained over a large pH range. Phase- and modulation-resolved spectra, collected between 420 and 550 nm, have indicated at least two spectral components associated with the two lifetime values. This, plus the observation of the dependence of the emission spectrum on the excitation wavelength, suggests a lifetime heterogeneity originating from ground-state molecular conformers, partially affected by pH changes. DAPI complexed with natural polydeoxynucleotides retained most of the features of DAPI decay in solution, except for the value of the long lifetime component that was longer (approximately 4 ns) and the relative fractional fluorescence intensities of the two components that were inverted. AT polymers/DAPI complexes show single exponential decay. Solvent shielding when DAPI is bound to DNA changes the indole ring solvation and stabilizes the longer lifetime decay component. For poly(GC)/DAPI complex, the decay was similar to that of free DAPI in solution, proving the dependence on the polydeoxynucleotides sequence the different types of binding and the reliability of the fluorescence method to solve them.