- Bello, Luca;
- Flanigan, Kevin;
- Weiss, Robert;
- Spitali, Pietro;
- Aartsma-Rus, Annemieke;
- Muntoni, Francesco;
- Zaharieva, Irina;
- Ferlini, Alessandra;
- Mercuri, Eugenio;
- Tuffery-Giraud, Sylvie;
- Claustres, Mireille;
- Straub, Volker;
- Lochmüller, Hanns;
- Barp, Andrea;
- Vianello, Sara;
- Pegoraro, Elena;
- Punetha, Jaya;
- Gordish-Dressman, Heather;
- Giri, Mamta;
- Hoffman, Eric;
- McDonald, Craig
The expressivity of Mendelian diseases can be influenced by factors independent from the pathogenic mutation: in Duchenne muscular dystrophy (DMD), for instance, age at loss of ambulation (LoA) varies between individuals whose DMD mutations all abolish dystrophin expression. This suggests the existence of trans-acting variants in modifier genes. Common single nucleotide polymorphisms (SNPs) in candidate genes (SPP1, encoding osteopontin, and LTBP4, encoding latent transforming growth factor β [TGFβ]-binding protein 4) have been established as DMD modifiers. We performed a genome-wide association study of age at LoA in a sub-cohort of European or European American ancestry (n = 109) from the Cooperative International Research Group Duchenne Natural History Study (CINRG-DNHS). We focused on protein-altering variants (Exome Chip) and included glucocorticoid treatment as a covariate. As expected, due to the small population size, no SNPs displayed an exome-wide significant p value (< 1.8 × 10-6). Subsequently, we prioritized 438 SNPs in the vicinities of 384 genes implicated in DMD-related pathways, i.e., the nuclear-factor-κB and TGFβ pathways. The minor allele at rs1883832, in the 5-untranslated region of CD40, was associated with earlier LoA (p = 3.5 × 10-5). This allele diminishes the expression of CD40, a co-stimulatory molecule for T cell polarization. We validated this association in multiple independent DMD cohorts (United Dystrophinopathy Project, Bio-NMD, and Padova, total n = 660), establishing this locus as a DMD modifier. This finding points to cell-mediated immunity as a relevant pathogenetic mechanism and potential therapeutic target in DMD.