- Lin, Zhisheng;
- Lohmann, Mark;
- Ali, Zulfikhar A;
- Tang, Chi;
- Li, Junxue;
- Xing, Wenyu;
- Zhong, Jiangnan;
- Jia, Shuang;
- Han, Wei;
- Coh, Sinisa;
- Beyermann, Ward;
- Shi, Jing
Anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered
ferromagnetic insulator, is investigated under an applied hydrostatic pressure
up to 2 GPa. The easy axis direction of the magnetization is inferred from the
AMR saturation feature in the presence and absence of the applied pressure. At
zero applied pressure, the easy axis is along the c-direction or perpendicular
to the layer. Upon application of a hydrostatic pressure>1 GPa, the uniaxial
anisotropy switches to easy-plane anisotropy which drives the equilibrium
magnetization from the c-axis to the ab-plane at zero magnetic field, which
amounts to a giant magnetic anisotropy energy change (>100%). As the
temperature is increased across the Curie temperature, the characteristic AMR
effect gradually decreases and disappears. Our first-principles calculations
confirm the giant magnetic anisotropy energy change with moderate pressure and
assign its origin to the increased off-site spin-orbit interaction of Te atoms
due to a shorter Cr-Te distance. Such a pressure-induced spin reorientation
transition is very rare in three-dimensional ferromagnets, but it may be common
to other layered ferromagnets with similar crystal structures to CGT, and
therefore offers a unique way to control magnetic anisotropy.