- Inoue, Makoto;
- Digman, Michelle A;
- Cheng, Melanie;
- Breusegem, Sophia Y;
- Halaihel, Nabil;
- Sorribas, Victor;
- Mantulin, William W;
- Gratton, Enrico;
- Barry, Nicholas P;
- Levi, Moshe
In dietary potassium deficiency there is a decrease in the transport activity of the type IIa sodium/phosphate cotransporter protein (NaPi) despite an increase in its apical membrane abundance. This novel posttranslational regulation of NaPi activity is mediated by the increased glycosphingolipid content of the potassium-deficient apical membrane. However, the mechanisms by which these lipids modulate NaPi activity have not been determined. We determined if in potassium deficiency NaPi is increasingly partitioned in cholesterol-, sphingomyelin-, and glycosphingolipid-enriched microdomains of the apical membrane and if the increased presence of NaPi in these microdomains modulates its activity. By using a detergent-free density gradient flotation technique, we found that 80% of the apical membrane NaPi partitions into the low density cholesterol-, sphingomyelin-, and GM1-enriched fractions characterized as "lipid raft" fractions. In potassium deficiency, a higher proportion of NaPi was localized in the lipid raft fractions. By combining fluorescence correlation spectroscopy and photon counting histogram methods for control and potassium-deficient apical membranes reconstituted into giant unilamellar vesicles, we showed a 2-fold decrease in lateral diffusion of NaPi protein and a greater than 2-fold increase in size of protein aggregates/clusters in potassium deficiency. Our results indicate that NaPi protein is localized in membrane microdomains, that in potassium deficiency a larger proportion of NaPi protein is present in these microdomains, and that NaPi lateral diffusion is slowed down and NaPi aggregation/clustering is increased in potassium deficiency, both of which could be associated with the decreased Na/Pi cotransport activity in potassium deficiency.