The supply of water to a plant canopy is dependent on the xylem pathway connecting roots to leaves. In some plants, sectored xylem pathways can restrict resource distribution, resulting in variable quality of organs in the shoots, yet little is known about the effects of sectoring in crop cultivars. In this study, we combined sap flow measurements and infusion of xylem-specific dyes to document functional conductive area and flow pathways from roots to shoots of 20-year-old Thompson Seedless and 8-year-old Chardonnay grapevines. Sap flow measurements and dye infusion demonstrated that water flowed predominantly in discrete xylem (visually identifiable from the trunk surface) sectors along the trunk axis, each supplying limited portions of the canopy. Functional conductive area in the trunk was proportional to that in the shoots even though sector size varied considerably between vines. Leaf area removal experiments further demonstrated sectoring in grapevines; sap flow decreased by >90 % in trunk sectors connected to excised shoots while it remained constant in trunk sectors supplying intact portions of the canopy. Despite the functional sectoring in grapevines, a high degree of interconnectivity of trunk xylem in the tangential direction was confirmed with synchrotron-based micro-computed tomography (microCT) and dye crossover infusion studies. Fruit attached to dyed canes was also similarly sectored; no clusters exhibited dye on non-dyed canes, while 97 % of clusters attached to dyed canes exhibited dye infusion. The dye travelled down the cluster rachis and appeared to accumulate at the pedicel/berry junction, but only on dyed canes. These findings suggest that xylem in grapevine trunks is integrated anatomically, but functions in a sectored manner due to high axial hydraulic conductivity. The functional sectoring of grapevine xylem documented here has important implications for management practices in vineyards and for fruit cluster uniformity within single grapevine.