This paper presents a round-trip strategy of multirotors subject to unknown
flow disturbances. During the outbound flight, the vehicle immediately utilizes
the wind disturbance estimations in feedback control, as an attempt to reduce
the tracking error. During this phase, the disturbance estimations with respect
to the position are also recorded for future use. For the return flight, the
disturbances previously collected are then routed through a feedforward
controller. The major assumption here is that the disturbances may vary over
space, but not over time during the same mission. We demonstrate the
effectiveness of this feedforward strategy via experiments with two different
types of wind flows; a simple jet flow and a more complex flow. To use as a
baseline case, a cascaded PD controller with an additional feedback loop for
disturbance estimation was employed for outbound flights. To display our
contributions regarding the additional feedforward approach, an additional
feedforward correction term obtained via prerecorded data was integrated for
the return flight. Compared to the baseline controller, the feedforward
controller was observed to produce 43% less RMSE position error at a vehicle
ground velocity of 1 m/s with 6 m/s of environmental wind velocity. This
feedforward approach also produced 14% less RMSE position error for the complex
flows as well.