The SARS-CoV-2 pandemic has heightened the interest in particle-laden turbulent jets generated by breathing, talking, coughing and sneezing, and how these can contribute to disease transmission. We present quantitative measurement methods for such flows, while exploring and offering improvements for common shortcomings. We generate jets consisting of either liquid droplets or solid particles in an isothermal, quiescent and electrically isopotential experimental chamber that was constructed to control the effects of ambient forcing on jet behavior. For liquid droplets, we find promise in surface deposition analysis based on fluorescent tracer use. For particles, we explore the performance of commercially available adhesive sampling strips and develop conductive grounded carbon tape based sampling strips. We explore ways in which the smallest of thermal gradients or electrostatic charge issues can affect particle dispersion, and suggest practical methods to address these issues. The developed methods are applied to study the simultaneous deposition of (Formula presented.) 25, 50 and 200 μm solid particles from a particle laden turbulent jet with a mean velocity of 33.2 m/s. The deposition location as a function of particle size was compared to results from a simple numerical RANS model, and illustrates ways in which imprecise initial or boundary conditions can lead to a notable deviation from experimental results. The differences in deposition pattern seen in experimental and numerical results despite a carefully controlled environment and characterized particle ejection indicate the need for a more stringent numerical model validation, especially when studying fate and transport of mid-range (neither purely aerosol or ballistic) sized particles.