- Demir, Ãzlem;
- Baronio, Roberta;
- Salehi, Faezeh;
- Wassman, Christopher D;
- Hall, Linda;
- Hatfield, G. Wesley;
- Chamberlin, Richard;
- Kaiser, Peter;
- Lathrop, Richard H;
- Amaro, Rommie E;
- Gilson, Michael
The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain ("cancer mutants''). Activity can be restored by second-site suppressor mutations ("rescue mutants''). This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD), without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 mu s of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC) metric was strongly correlated (r(2) = 0.77) with reported values of experimentally measured Delta Delta G protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i) p53 cancer mutants were more flexible than wild-type protein, (ii) second-site rescue mutations decreased the flexibility of cancer mutants, and (iii) negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants.