- Krestianinov, Evgenii;
- Amelin, Yuri;
- Cary, Paige;
- Huyskens, Magdalena;
- Dey, Supratim;
- Hibiya, Yuki;
- Tang, Haolan;
- Young, Edward;
- Pack, Andreas;
- Di Rocco, Tommaso;
- Yin, Qing-Zhu;
- Miller, Audrey
The short-lived radionuclide aluminium-26 (26Al) isotope is a major heat source for early planetary melting. The aluminium-26 - magnesium-26 (26Al-26Mg) decay system also serves as a high-resolution relative chronometer. In both cases, however, it is critical to establish whether 26Al was homogeneously or heterogeneously distributed throughout the solar nebula. Here we report a precise lead-207 - lead-206 (207Pb-206Pb) isotopic age of 4565.56 ± 0.12 million years (Ma) for the andesitic achondrite Erg Chech 002. Our analysis, in conjunction with published 26Al-26Mg data, reveals that the initial 26Al/27Al in the source material of this achondrite was notably higher than in various other well-preserved and precisely dated achondrites. Here we demonstrate that the current data clearly indicate spatial heterogeneity of 26Al by a factor of 3-4 in the precursor molecular cloud or the protoplanetary disk of the Solar System, likely associated with the late infall of stellar materials with freshly synthesized radionuclides.