Four isotopes of rutherfordium,254-257Rf, were produced by the 208Pb(48Ti, xn)256-xRf and 208Pb(50Ti, xn)258-xRf reactions (x = 1, 2) at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. Excitation functions were measured for the 1n and 2n exit channels. A maximum likelihood technique, which correctly accounts for the changing cross section at all energies subtended by the targets, was used to fit the 1n data to allow a more direct comparison between excitation functions obtained under different experimental conditions. The maximum 1n cross sections of the 208Pb(48Ti, n)255Rf and 208Pb(50Ti, n)257Rf reactions obtained from fits to the experimental data are 0.38 +/- 0.07 nb and 40 +/-5 nb, respectively. Excitation functions for the 2n exit channel were also measured, with maximum cross sections of nb for the 48Ti induced reaction, and 15.7 +/- 0.2 nb for the 50Ti induced reaction. The impact of the two neutron difference in the projectile on the 1n cross section is discussed. The results are compared to the Fusion by Diffusion model developed by Swiatecki, Wilczynska, and Wilczynski.
A new isotope of Hs was produced in the reaction 208Pb(56Fe, n)263Hs at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. Six genetically correlated nuclear decay chains have been observed and assigned to the new isotope 263Hs. The measured cross section was 21+13-8.4 pb at 276.4 MeV lab-frame center-of-target beam energy. 263Hs decays with a half-life of 0.74 ms by alpha-decay and the measured alpha-particle energies are 10.57 +- 0.06, 10.72 +- 0.06, and 10.89 +- 0.06 MeV. The experimental cross section is compared to a theoretical prediction based on the Fusion by Diffusion model [W. J. Swiatecki et al., Phys. Rev. C 71, 014602 (2005)].
New isotope, 264Sg, was identified using the 38U(30Si,xn)268-xSg reaction and excitation functions for 262-264Sg were measured. 264Sg decays by spontaneous fission with a half life of 37 +27/-11 ms. The spontaneous fission branch for 0.9-s 263Sg was measured for the first time and found to be (13+-8) percent. 262Sg decays by spontaneous fission with a 15 +5/-3 ms half-life. Spontaneous fission partial half-life systematics are evaluated for even-even Sg isotopes from 258Sg through 266Sg, spanning the transition region between the N=152, Z=100 and N=162, Z=108 deformed shells.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.