Electromechanical reshaping (EMR) provides a means of producing shape change in cartilage by initiating oxidation-reduction reactions in mechanically deformed specimens. This study evaluates the effect of voltage and application time on specimen shape change using needle electrodes. Rabbit septal cartilage specimens (20 x 8 x 1 mm, n = 200) were bent 90 degrees in a precision-machined plastic jig. Optimal electrode placement and the range of applied voltages were estimated using numerical modeling of the initial electric field within the cartilage sample. A geometric configuration of three platinum needle electrodes 2 mm apart from each other and inserted 6 mm from the bend axis on opposite ends was selected. One row of electrodes served as the anode and the other as the cathode. Constant voltage was applied at 1, 2, 4, 6, and 8 V for 1, 2, and 4 minutes, followed by rehydration in phosphate buffered saline. Samples were then removed from the jig and bend angle was measured. In accordance with previous studies, bend angle increased with increasing voltage and application time. Below a voltage threshold of 4 V, 4 minutes, no clinically significant reshaping was observed. The maximum bend angle obtained was 35.7 ± 1.7 º at 8 V, 4 minutes.