Background
The levels of the ω-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been associated with alcohol sensitivity in vertebrate and invertebrate model systems, but prior studies have not examined this association in human samples despite evidence of associations between ω-3 LC-PUFA levels and alcohol-related phenotypes. Both alcohol sensitivity and ω-3 LC-PUFA levels are impacted by genetic factors, and these influences may contribute to observed associations between phenotypes. Given the potential for using EPA and DHA supplementation in adjuvant care for alcohol misuse and other outcomes, it is important to clarify how ω-3 LC-PUFA levels relate to alcohol sensitivity.Methods
Analyses were conducted using data from the Avon Longitudinal Study of Parents and Children. Plasma ω-3 LC-PUFA levels were measured at ages 15.5 and 17.5. Participants reported on their initial alcohol sensitivity using the early drinking Self-Rating of the Effects of Alcohol (SRE-5) scale, for which more drinks needed for effects indicates lower levels of response per drink, at ages 15.5, 16.5, and 17.5. Polygenic liability for alcohol consumption, alcohol problems, EPA levels, and DHA levels was derived using summary statistics from large, publicly available datasets. Linear regressions were used to examine the cross-sectional and longitudinal associations between ω-3 LC-PUFA levels and SRE scores.Results
Age 15.5 ω-3 LC-PUFA levels were negatively associated with contemporaneous SRE scores and with age 17.5 SRE scores. One modest association (p = 0.02) between polygenic liability and SRE scores was observed, between alcohol problems-based polygenic risk scores (PRS) and age 16.5 SRE scores. Tests of moderation by genetic liability were not warranted.Conclusions
Plasma ω-3 LC-PUFA levels may be related to initial sensitivity to alcohol during adolescence. These data indicate that diet-related factors have the potential to impact humans' earliest responses to alcohol exposure.